Logical Predicates {and-Relatiens)

in Higher-order Mathematical Operational Semantics

Sergey Goncharov, Alessio Santamaria, Lutz Schroder, Stelios Tsampas and Henning Urbat

WG6 Leuven

Friedrich-Alexander-Universitat Erlangen-Niirnberg

Higher-Order Mathematical Operational Semantics (or HO Abstract

Logical
Relations Secure Compi-
(FoSSaCS'24, lation Criteria
Ariiv) Fully abstract
compilation
Howe’s
Method
Environmental (LICS23)
Bisimulations
Reasoning Secure Maps of HO
Methods Compilation GSOS laws
Probabilistic,
Behavioural Higher-order User interface
B avas Computstions Abstract GSOS
ects
(POPL'23, JFP)
Mechanization
Exceptions Proofs

Side-effects

The setting of Logical Predicates

1. An operational semantics of a higher-order language is given.

- Typically a typed A-calculus.
- Write A, (T) for the set {t |+ t: 7} and A, for the set {t| @ F t: 7}.

The setting of Logical Predicates

1. An operational semantics of a higher-order language is given.

- Typically a typed A-calculus.
- Write A, (T) for the set {t |+ t: 7} and A, for the set {t| @ F t: 7}.

2. A (type-indexed) predicate P — A is given, a program property we want to prove.

- Strong normalization, type safety etc.
- Can't be proven inductively.

The setting of Logical Predicates

1. An operational semantics of a higher-order language is given.

- Typically a typed A-calculus.
- Write A, (T) for the set {t |+ t: 7} and A, for the set {t| @ F t: 7}.

2. A (type-indexed) predicate P — A is given, a program property we want to prove.

- Strong normalization, type safety etc.
- Can't be proven inductively.

3. We construct a suitable logical predicate over P, say [1P, which implies P.

- Logical in the sense that
“For any term t and s in OOP and of the suitable type, t - s is also in CIP".

The setting of Logical Predicates

1. An operational semantics of a higher-order language is given.

- Typically a typed A-calculus.
- Write A, (T) for the set {t |+ t: 7} and A, for the set {t| @ F t: 7}.

2. A (type-indexed) predicate P — A is given, a program property we want to prove.

- Strong normalization, type safety etc.
- Can't be proven inductively.

3. We construct a suitable logical predicate over P, say [1P, which implies P.
- Logical in the sense that

“For any term t and s in OOP and of the suitable type, t - s is also in CIP".

4. Proceed by induction to prove that (the open extension of) CIP holds.

Strong Normalization

Definition (A standard logical predicate)

SNunit (t) - uunit (t)
SNpy—ery (£) = Uy o, (£) A (V52 71.SN;,(5) = SN (¢ - 5))

Definition (Open extension of SN)

—

SN (t)(I') = For any closed substitution (& I e,: ['(n))ngr|
such that Vn € |I|. SNr(,)(en), then SN (t[en/xn])

Strong Normalization

One annoying case of the proof is that of A-abstraction [= Ax: 71.t: 71 — 7.
Given a substitution (& I e,: '(n))n¢|r| satisftying SN, we have to:

e Push the substitution inside the A-abstraction, try to prove that the whole term is
in SN, for that reason consider what happens when we have terms such as
(Ax: 71.t") - s with SN, (s) for the substituted t/, think back to what happens
during B-reduction, reflect on properties of substitution etc.

Complex language = complex argument...

The goal of this talk

| will argue for two directions of abstraction, via
Higher-order Abstract GSOS

Any predicate P

SN > OP

Any semantics y

SN7

The goal of this talk

| will argue for two directions of abstraction, via
Higher-order Abstract GSOS

Any predicate P

SN > P

+Efficient

Any semantics y .
reasoning!

SN7

Dissecting the logical predicate (1)

SNunit (t) = Yunit (t)
SNp or, (t) = dryor, () A (Vs: 71.SN7 () = SN, (t-5))

Dissecting the logical predicate (1)

SNunit (t) = Yunit (t)
SNp or, (t) = dryor, () A (Vs: 71.SN7 () = SN, (t-5))

|dea : Write t = ¢/ if t || Ax: 71.M and t' = M([s/x]

Dissecting the logical predicate (1)

SNunit (t) = Yunit (t)
SNp or, (t) = dryor, () A (Vs: 71.SN7 () = SN, (t-5))

|dea : Write t = ¢/ if t || Ax: 71.M and t' = M([s/x]

‘Luunit (t) = Uunit (t)
U ()=l tA(si it S AL (s) = U (1))

Dissecting the logical predicate (1)

SNunit (t) = Yunit (t)
SNp or, (t) = dryor, () A (Vs: 71.SN7 () = SN, (t-5))

|dea : Write t = ¢/ if t || Ax: 71.M and t' = M([s/x]

‘ulunit (t) = Uunit (t)
U ()=l tA(si it S AL (s) = U (1))

Idea : Abstract away from the predicate ||

Dissecting the logical predicate (2)

Punlt()
Prrt A(Vs: Tt = £ AOP,, (s) = OP,, (1))

D'Dunit (t)
0P, (t) =

Dissecting the logical predicate (2)

Punlt()
Prrt A(Vs: Tt = £ AOP,, (s) = OP,, (1))

D'Dunit (t)
0P, (t) =

Idea : Move one from = to the more fundamental —

Dissecting the logical predicate (2)

Punlt()
Prrt A(Vs: Tt = £ AOP,, (s) = OP,, (1))

‘:]Punit (t)
0P, (t) =

Idea : Move one from = to the more fundamental —

greatest subset of A = DP“n't() o Punit(t)
OP;,—ry (1) if t—t

0P ry(t) = Prieny(t) A L . s
OP,(s) = OP,(t) if t=1t

Induction up to [l on STLC

Theorem

Let P — N be any predicate on closed terms. Then P is true if all of the following
are true:

1. the unit expression e: unit satisfies P,

2. for all closed application terms t's such that O, _..,P(t) and O, P(s), we have
P.,(ts), and

3. for all A\-abstractions Ax: Ti.t, we have Py _..,(Ax: 71.t).

Proof.
Instantiate Th. 36 with (Th36.P), (@) = P and (Th36.P). (I # @) =T. O

Induction up to [:] on STLC (slightly more general)

Theorem
Let P — N be any predicate on closed terms. Then P is true if all of the following
are true:

1. the unit expression e: unit satisfies P,

2. for all closed application terms t s such that O _..,P(t) and O, P(s), we have
P.,(ts), and

3. for all M\-abstractions \x: 1. t: 71 — T3 such that OP.,(x: 71)(t), we have
Pr—ory(AX: T1. t).

Proof.
Instantiate Lemma 70 (arXiv) on STLC with (Lem70.P).(2) = Q; and
(Lem70.P) (T #2)=T. O

10

Let’s try this out!

Proving strong normalization for STLC

1. *Uunit (e);
2. U, (ts) with O —r, 4 (t) and O | (s);

3. Ir—m (Ax: 71.t) (what t can do is irrelevant in this case).

11

Let’s try this out!

Proving strong normalization for STLC

1. *Uunit (e);
2. U, (ts) with O —r, 4 (t) and O | (s);

3. Ur—r, (Ax: 71.t) (what t can do is irrelevant in this case).

Proof.
(1) and (3) are trivial, (2) is straightforward once you realize that JQ is an invariant
w.r.t. — for all Q. O

11

Objective Complete

Let's explore the other direction

Any predicate P

0P

Any semantics +Efficient

reasoning!

SN7

12

Objective Complete

Let's explore the other direction

Any predicate P

0P

Any semantics ~y +Efficient

reasoning!

SN7

12

The abstract setting of Logical Predicates

1. An operational semantics of a higher-order language is given.

2. A (type-indexed) predicate P — pX is given.
3. We construct a suitable logical predicate over P, say L1P, which implies P.

4. Proceed by induction to prove that (the open extension of) CIP holds.

13

The abstract setting of Logical Predicates

1. An operational semantics of a higher-order language is given.

- There is a category C, the universe of discourse,

2. A (type-indexed) predicate P — pX is given.
3. We construct a suitable logical predicate over P, say L1P, which implies P.

4. Proceed by induction to prove that (the open extension of) CIP holds.

13

The abstract setting of Logical Predicates

1. An operational semantics of a higher-order language is given.

- There is a category C, the universe of discourse,
- an object of terms puX € C, the carrier of the initial algebra of a functor ¥: C — C,

2. A (type-indexed) predicate P — pX is given.
3. We construct a suitable logical predicate over P, say L1P, which implies P.

4. Proceed by induction to prove that (the open extension of) CIP holds.

13

The abstract setting of Logical Predicates

1. An operational semantics of a higher-order language is given.

- There is a category C, the universe of discourse,
- an object of terms puX € C, the carrier of the initial algebra of a functor ¥: C — C,
- an “operational semantics” morphism pu¥ — B(uX, uX) for some bifunctor

B: C®x(C —C.

2. A (type-indexed) predicate P — pX is given.

3. We construct a suitable logical predicate over P, say L1P, which implies P.

4. Proceed by induction to prove that (the open extension of) CIP holds.

13

The abstract setting of Logical Predicates

1. An operational semantics of a higher-order language is given.

- There is a category C, the universe of discourse,
- an object of terms puX € C, the carrier of the initial algebra of a functor ¥: C — C,
- an “operational semantics” morphism pu¥ — B(uX, uX) for some bifunctor
B: C®x(C —C.
2. A (type-indexed) predicate P — pX is given.
- A monomorphism into u¥.

3. We construct a suitable logical predicate over P, say L1P, which implies P.

4. Proceed by induction to prove that (the open extension of) CIP holds.

13

The abstract setting of Logical Predicates

1. An operational semantics of a higher-order language is given.
- There is a category C, the universe of discourse,
- an object of terms puX € C, the carrier of the initial algebra of a functor ¥: C — C,
- an “operational semantics” morphism pu¥ — B(uX, uX) for some bifunctor
B: C®PxC—C.
2. A (type-indexed) predicate P — pX is given.
- A monomorphism into u¥.
3. We construct a suitable logical predicate over P, say L1P, which implies P.
- Language-independent construction OJ: Pred,5s(C) — Pred,s(C).

4. Proceed by induction to prove that (the open extension of) CIP holds.

13

The abstract setting of Logical Predicates

1. An operational semantics of a higher-order language is given.
- There is a category C, the universe of discourse,
- an object of terms puX € C, the carrier of the initial algebra of a functor ¥: C — C,
- an “operational semantics” morphism pu¥ — B(uX, uX) for some bifunctor
B: C®PxC—C.
2. A (type-indexed) predicate P — pX is given.
- A monomorphism into u¥.
3. We construct a suitable logical predicate over P, say L1P, which implies P.
- Language-independent construction OJ: Pred,5s(C) — Pred,s(C).
4. Proceed by induction to prove that (the open extension of) CIP holds.

- “Initial algebras have no proper subalgebras”.

13

The abstract setting of Logical Predicates

1. An operational semantics of a higher-order language is given.
- There is a category C, the universe of discourse,
- an object of terms puX € C, the carrier of the initial algebra of a functor ¥: C — C,
- an “operational semantics” morphism pu¥ — B(uX, uX) for some bifunctor
B: C®PxC—C.
2. A (type-indexed) predicate P — pX is given.
- A monomorphism into u¥.
3. We construct a suitable logical predicate over P, say L1P, which implies P.
- Language-independent construction OJ: Pred,5s(C) — Pred,s(C).
4. Proceed by induction to prove that (the open extension of) CIP holds.

- “Initial algebras have no proper subalgebras”.
- Efficient, generic reasoning principles.

13

The abstract setting of Logical Predicates

1. An operational semantics of a higher-order language is given.

- There is a category C, the universe of discourse,
- an object of terms puX € C, the carrier of the initial algebra of a functor ¥: C — C,
- an “operational semantics” morphism u¥ — B(uX, uX) for some bifunctor

B: C®x(C —C.

2. A (type-indexed) predicate P — pX is given.
- A monomorphism into pX.

3. We construct a suitable logical predicate over P, say L1P, which implies P.
- Language-independent construction OJ: Pred,5s(C) — Pred,s(C).

4. Proceed by induction to prove that (the open extension of) CIP holds.

- “Initial algebras have no proper subalgebras”.
- Efficient, generic reasoning principles.

13

Categorical machinery

B(X,Y):CPxC—C ~:pX— B(px,uX)
BX,Y)=Y+YX At)=tift =t and y(Ax.M) = (e — M[e/x])

14

Categorical machinery

B(X,Y):CPxC—=C ~:pux — B(px,pXx)
BX,Y)=Y+YX At)=tift =t and y(Ax.M) = (e — M[e/x])

Pred(C)° x Pred(C) —2— Pred(C)

~IoxI-1| I
> C

C% x C B

14

Categorical machinery

B(X,Y):CPxC—C ~:pX— B(px,uX)
BX,Y)=Y+YX At)=tift =t and y(Ax.M) = (e — M[e/x])

Pred(C)° x Pred(C) —2— Pred(C)

~IoxI-1| I
> C

C®PxC 5

For example, B(P, Q) C puX + uX** is the disjoint union of (i) the set {t | Q(t)} and
(i) the set of functions f € uX** that map inputs in P to outputs in Q.

14

Logical Predicates

Relative invariant
Let c: Y — B(X,Y) be a B(X, —)-coalgebra. Given predicates S — X, P — Y, we

say that P is an S-relative (B-)invariant (for c) if

P < c*[B(S, P)].

Logical Predicate

A predicate P — uX is logical (for) if it is a P-relative B-invariant.

15

Logical Predicates

Relative invariant
Let c: Y — B(X,Y) be a B(X, —)-coalgebra. Given predicates S — X, P — Y, we

say that P is an S-relative (B-)invariant (for c) if

P < c*[B(S, P)].

Logical Predicate

A predicate P — uX is logical (for) if it is a P-relative B-invariant.

A predicate P is logical if for all t € u¥, P(t) implies:

15

Logical Predicates

Relative invariant
Let c: Y — B(X,Y) be a B(X, —)-coalgebra. Given predicates S — X, P — Y, we

say that P is an S-relative (B-)invariant (for c) if

P < c*[B(S, P)].

Logical Predicate

A predicate P — uX is logical (for) if it is a P-relative B-invariant.

A predicate P is logical if for all t € u¥, P(t) implies:

1. If t = t/, then P(t') (with ND: if 3t. t — t/, then P(t)).

15

Logical Predicates

Relative invariant
Let c: Y — B(X,Y) be a B(X, —)-coalgebra. Given predicates S — X, P — Y, we

say that P is an S-relative (B-)invariant (for c) if

P < c*[B(S, P)].

Logical Predicate

A predicate P — uX is logical (for) if it is a P-relative B-invariant.

A predicate P is logical if for all t € u¥, P(t) implies:

1. If t = t/, then P(t') (with ND: if 3t. t — t/, then P(t)).
2. Forall's, if t 2 t’ and P(s), then P(t').

15

One logical predicate to rule them all

The O

Under certain conditions, the most important being that the predicate lifting B is
predicate-contractive, for every predicate P — X on the state space of our
coalgebra X — B(X, X) (i.e. a program property), there exists a certain “large”
predicate [IP such that:

1. OP<LP

2. OP < ¢*[B(OP,0P)] (i.e. OP is logical)

3. OP is the largest [1P-relative invariant.

16

One logical predicate to rule them all

The O

Under certain conditions, the most important being that the predicate lifting B is
predicate-contractive, for every predicate P — X on the state space of our
coalgebra X — B(X, X) (i.e. a program property), there exists a certain “large”
predicate [IP such that:

1. OP<LP

2. OP < ¢*[B(OP,0P)] (i.e. OP is logical)

3. OP is the largest [1P-relative invariant.

Conclusion/translation: The lifting being defined inductively on types is sufficient for
the existence of this magical, suitable logical predicate.

16

Logical Predicates proof method in the abstract

Assuming the following:

1. An initial algebra (object of terms) Lu¥ % u¥,

2. an ‘“operational semantics” morphism puX — B(uX, uX) for some bifunctor
B: C°®?xC —C,

3. and logical predicates CJ(—),
the proof method of logical predicates amount to the following:

Fundamental Property
As initial algebras have no proper subalgebras, then

Y(OP)</[OP] = OP=uyxr — P puX.

17

Induction up to [

The definition of logicality and [systematizes the logical predicates proof method, but
where is the “efficient reasoning”?

18

Induction up to [

The definition of logicality and [systematizes the logical predicates proof method, but
where is the “efficient reasoning”?
Induction up to [J

For a certain class of higher-order GSOS laws, instead of laboriously showing
Y (OP) < *[OP], it suffices to show the much simpler X (CIP) < t*[P].

18

Induction up to [

The definition of logicality and [systematizes the logical predicates proof method, but
where is the “efficient reasoning”?

Induction up to [J

For a certain class of higher-order GSOS laws, instead of laboriously showing
Y (OP) < *[OP], it suffices to show the much simpler X (CIP) < t*[P].

Note: Things are a bit more complex in languages with binding and substitution due
to contractivity considerations, but the principle is the same.

18

Induction up to [

The definition of logicality and [systematizes the logical predicates proof method, but
where is the “efficient reasoning”?

Induction up to [J

For a certain class of higher-order GSOS laws, instead of laboriously showing
Y (OP) < *[OP], it suffices to show the much simpler X (CIP) < t*[P].

Note: Things are a bit more complex in languages with binding and substitution due
to contractivity considerations, but the principle is the same. This explains the need to
extend the predicate to open terms.

Induction up to [J

For a certain class of A-laws, instead of laboriously showing ¥ (LIP) < (*[EP], it
suffices to show the much simpler X(CIP) < /*[P].

18

Thank you!

19

