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Introduction : Cumulativity
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A Cumulative Universe Hierarchy

In CIC, or already without inductives � in CCω � we have :

A hierarchy of Universes :

Prop : Type1 : ... : Typei : Typei+1 : ...

+ Implicit subtyping between them, the cumulativity of the
hierarchy [The20, Let04] :

Prop ≤ Type1 ≤ ... ≤ Typei ≤ Typei+1 ≤ ...

+
Γ ` t : A A ≤ B

Γ ` t : B

sub
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Why Cumulativity :

• Formalizes the set-theoretic intuition of inclusion of smaller universes in
bigger ones in a hierarchization of a unique global and informal

"superuniverse", present for well-founded sets as the Von Neumann
cumulative hierarchy in ZFC ;

• Allows for �lling data structures with inhabitants not of a type but of a
proposition : one may sometimes need lists of proof terms of a proposition,
or to evaluate polymorphic functions on propositions, without having to
rede�ne Prop-avatars (length of a list...) ;

• Allows for talking about equality of proof terms (in UIP, etc.) ;

• Avoids having to de�ne multiple rules di�ering only by substitution of Prop
for Type, typically :

Axiom funext : ∀ A B : Type, ∀ f g : A → B, (∀ x, f x = g x) → f = g.
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Disadvantages of Cumulativity :

The subsomption rule sub makes it an implicit subtyping. Thus :

• No uniqueness of type for a term (even up to conversion and in a
given context) ;

• Obstacle to proper extraction of programs from terms :
The extraction process eliminates any subterm t : P : Prop, as having
purely logical content and therefore not participating in the
computation (see [Let04]) ; even if it has computational content to
integrate into the extracted program and only a subterm coming
e�ectively from Prop, typically dominant due to its impredicativity.
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The Link with Extraction
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Example

Definition f (X: Type)(h: nat → X)(g: X → nat) := g (h 0).

Definition fprop := f True (fun _ => I) (fun _ => 1).

fprop is well-typed in Coq since I: True,

but I : True : Prop, so (fun _ => I) : (nat → True) : Prop, and the
extraction replaces the entire subterm (fun _ => I) with an unimportant
value.
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To Remedy This :

Introduction of coercions coeA,B witnessing, at the level of their
inhabitants, that A ≤ B : if t : A then coeA,Bt : B .

These explicit, ineradicable coercions then encode in the term itself the
subtyping hidden in its typing derivation.

However, we will seek to keep only the relevant information, i.e. the
possible passages from Prop to a Typei or even some Typei to some Typej
for j 6= i ; their number and order, and their propagation through type
formers with type arguments (and not necessarily, all the terms A and B
themselves).
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CCsub
ω
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CCsub
ω : The Syntax

The option chosen to introduce this explicit subtyping is the key idea of
subtyping marks m, in the following syntax grammar (metavariables will be
freely, inductively primed) :

i ::= 1 | i + 1
a, b, c ::= xi
s, σ ::= Prop | Typei
m ::= id | ⇑s′s | ↑s

′
s | ↓s

′
s | (m→ m′) | m ◦m′

t, u,A ::= a | s | Πa : A : s.B | λa : A : s.t | u t | coem t
Γ ::= · | Γ, a : A : s

preserving this information as an index of the symbol ≤ of "the" subtyping
relation, in order to then encode it in the terms via the introduction of a
general symbol coe of coercion, indexed by the same mark.
We will need to use sorted domains and declarations, and sorting-typing
judgements as well, in order to keep the information of the universe that
the typing happens in, as the only atomic term that denotes it, which by
de�nition is an s � for sort.

B., Herbelin & Letouzey Explicit Cumulativity in CCω 5 avril 2024 12 / 34



CCsub
ω : The Marks

They are currently constructed from four symbols of constants :

id expressing the part of the subtyping that remains implicit... That is only
its re�exive part, built in between every type � especially universe � and
itself,

⇑s′s expressing the subtyping of any universe s into any bigger one s ′,

↑s′s allowing to propagate the subtyping between types inhabiting some
universe s and of its ⇑s′s -coerced image into any bigger s ′ and

↓s′s expressing the reciprocal subtyping between the ⇑s′s -coerced type of one
in s into any bigger s ′, and this naked one itself, in other words such that
coe↓s′s is a retraction of coe↑s′s ;

and two subtyping mark formers :
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CCsub
ω : The Mark Formers

And two subtyping mark formers :

→ between Π-types (parenthesized because it is in�x and
non-associative), allowing to propagate not only the subtyping
between their codomains (in a covariant way), but also that between
their domains, in a contravariant way, and

◦ expressing the built-in transitivity of our subtyping (unparenthesized
even if in�x because � trivially � equiderivably associative), necessary
in particular to handle coerced universes.
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CCsub
ω : The Rules
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CCsub
ω : The Subtyping Rules

A ≡ B

A ≤id B

subid
s ≤⇑s′s s ′

if s @ s ′ ; sub⇑s′s

A ≡ B

A ≤↑s′s coe⇑s′s
B

subss′
A ≡ B

coe⇑s′s
A ≤↓s′s B

sub↓s′s
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A′ ≤m A B[coema
′/a] ≤m′ B ′

Πa : A : s.B ≤m→m′ Πa′ : A′ : s.B ′
for a′ being a or fresh for B ; subΠ

A ≤m B B ≤m′ C

A ≤m′◦m C

sub◦

A′ ≤m B

A ≤m B

if A . A′ ; sub.,L
A ≤m B ′

A ≤m B

if B . B ′ ; sub.,R
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The unusual Conversion Rules

t ≡ u

coem t ≡ coem u

for m 6= id | ⇑ss | ↑ss | ↓ss ; coe≡

coem′ (t coem a) ≡ u a

coem→m′ t ≡ u

η

L
‡ u a ≡ coem′ (t coem a)

u ≡ coem→m′ t

η

R
‡

‡ for t and u not containing a (even λ-abstracted).
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The Reduction Rules

weak-head β-reduction, going under coercions too,

coem t . t for m = id | ⇑ss | ↑ss | ↓ss ;
coem◦m′ t . coemcoem′ t ;

coe⇑s′′
s′

coe⇑s′s
t . coe⇑s′′s

t, similarly for ↑'s, ↓'s and combinations of them ;

(coem→m′ t u) . coem′ (t (coem u)) ;

Rules such that whenever s v s′ and σ @ σ′,

coe
⇑π(s′,σ′)
π(s,σ)

(Πa : A : s.B) ≡ Πa : coe⇑s′s
A : s′. coe⇑σ′σ

B,

coe
↑π(s′,σ′)
π(s,σ)

(λa : A : s.t) ≡ λa : coe⇑s′s
A : s′. coe↑σ′σ

t
[
coe↓s′s

a/a
]

≡ coe↓s′s →↑σ
′
σ

(λa : A : s.t)

and

coe
↓π(s′,σ′)
π(s,σ)

(λa : coe⇑s′s
A : s.t) ≡ λa : A : s′.coe↓σ′σ

t
[
coe↑s′s

a/a
]

≡ coe↑s′s →↓σ
′
σ

(λa : A : s.t).

It preserves subject reduction.
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CCsub
ω : The Key Typing Rule & What Happens to The

Example
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Explicit Coercive Version of the Subsumption Rule

The introduction of coercions is ruled as follows :

Γ ` t : A : s A ≤m B Γ ` B : s ′ : N(s ′)

Γ ` coem t : B : s ′
subcoe

where N is the next-bigger-universe metafunction.

So that fprop is well-de�ned :

Definition fprop := f ( coe⇑Type1Prop

True) (fun _ => coe↑Type1Prop

I)

(fun _ => 1).

And the extraction eliminates only the coe↑Type1Prop

I, keeping notably the

"fun".
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CCsub
ω : The Results
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Usual or Commutation Lemmas

Substitution by interconvertible terms at the same places does not a�ect the
interconvertibility of types :

A ≡ B v ≡ w

A[v/b] ≡ B[w/b]

is admissible (for any b).

Substitutions are monotonic with respect to subtyping :

A ≤m B t ≡ u

A[t/a] ≤m B[u/a]

is admissible (for any a).

Γ, a : A : s : s, Γ′ ok Γ, a : A : s, Γ′ ` u : B : s′ Γ ` t : A : s

Γ, Γ′ [t/a] ` u [t/a] : B [t/a] : s′
subst

is admissible.

Any sorted type of a term in a well-formed context is itself indeed well-sorted there by
inhabiting this sort, as the notation suggests : f Γ ok and Γ ` t : A : s for some t, then
Γ ` A : s : N(s).

For any well-typable A, B, and A′ and B′, if A ≤m B and A′ ≤m B′ for some m, then
A ≡ A′ if and only if B ≡ B′.
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Unicity of Typing

In CCsub
ω , thanks to the explicitation of the cumulativity of the full universe

hierarchy, any term may only inhabit interconvertible types in a given
well-formed context, and this in a same sort.

That is,
Γ ok Γ ` t : A : s Γ ` t : A′ : s ′

A ≡ A′
unictype

is admissible by CCsub
ω , and in addition from those premises follow that we

have s = s ′.

This is also what makes propositions, not types and types, not propositions,
for sure.
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Lifting Lemmas

Reduction lifting : if |t| . u � i.e. |t| .β u � then there exists a
decoration u′ of u such that t . u′, actually even t .β u

′ too.

Weak conversion lifting : any two terms that di�er only by (potentially)
several head coercions, and inhabit a same type in a same (sort and)
well-formed context in CCsub

ω , are mutually inter-convertible there.

Subtyping lifting : if there is a Γ okCCsubω
such that

Γ `CCsubω
A : s : N(s) for some s and Γ `CCsubω

B : s ′ : N(s ′) for some

s ′, and if |A| ≤ |B| in CCω for some m, then there exists m such that
A ≤m B in CCsub

ω .

Typing lifting : ? We need to decorate termes and types with
well-placed coercions.
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CCsub
ω : The Algorithms
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An Explicitation Algorithm

We de�ne, by structural induction on terms t in CCω, an inference function
φ taking, a well-formed context Γ in CCsub

ω and producing, if it exists, a
decoration t ′ of t, an A and an s in CCsub

ω for which we hope that
Γ `CCsubω

t ′ : A : s, in order to get a section of the erasure of coercions that
preserves typing.
Its nontrivial cases :

φΓ(Πa : A.B) , (Πa : A′ : s.B ′, π(s, s ′),N(π(s, s ′)))

where : (A′,S ,N(s)) , φΓ(A) for the s such that S .∗ s, or

(A′′,S , σ) , φΓ(A) such that S .∗ coe⇑σ
N(s)

s and

A′ , coe↓σ
N(s)

A′′ , and in both cases

(B ′,S ′,N(s ′)) , φΓ,a:A′:s(B) for the s ′ such that S ′ .∗ s ′, or

(B ′′,S ′, σ′) , φΓ,a:A′:s(B) such that
S ′ .∗ coe⇑σ′

N(s′)
s ′′ and

B ′ , coe↓σ′
N(s′)

B ′′;
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An Explicitation Algorithm

φΓ(λa : A.t) , (λa : A′ : s.t ′,Πa : A′ : s.B ′, π(s, s ′))

where : (A′,S ,N(s)) , φΓ(A) for the s such that S .∗ s, or

(A′′,S , σ) , φΓ(A) such that
S .∗ coe⇑σ

N(s)
s and

A′ , coe↓σ
N(s)

A′′ , and in both cases

(t ′,B ′, s ′) , φΓ,a:A′:s(t);

φΓ(u t) , (u′ t ′,B [t ′/a] , s ′)

where : (u′,C , π(s, s ′)) , φΓ(u) for the s such that
C .∗ Πa : A : s.B for some a, A and B and the s ′ 1

such that Γ, a : A : s `
CCsubω

B : s ′ : N(s ′) , and

t ′ , ψΓ,A(t).

1. Existing by induction (see the Theorem) and unique by Proposition ??.
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A Mark Synthesis Algorithm

The square brackets below are options :

markwhd

([
coe⇑sProp

]
Πa : A : σ.A′,

[
coe⇑s′Prop

]
Πb : B : σ′.B ′

)
,[

↑s′Prop ◦
] (

mark (B,A)→ mark
(
A′
[
coemark(B,A)b/a

]
,B ′
)) [
◦ ↓sProp

]
when b is a or fresh for A′, s @ σ and s ′ @ σ′

markwhd (A,B) , id
when A and B are convertible and not both Π-types, even coerced
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A Mark Synthesis Algorithm

mark (A,B) , markwhd (whd(A),whd(B))

markwhd
(
A, coe⇑s′s

B
)

, ↑s
′
s

when A ≡ B

markwhd
(
coe⇑s′s

A,B
)

, ↓s
′
s

when A ≡ B

markwhd
(
coe⇑s′s

A, coe⇑s′′s
B
)

, ↑s
′′
s ◦ ↓s

′
s

when A ≡ B and s ′ 6= s ′′

markwhd (s, s ′) , ⇑s
′
s

when s @ s ′

markwhd

(
coe⇑s′

N(s)
A, s ′′

)
, ⇑s

′′
s ◦ ↓s

′
N(s)

when A .∗ s @ s ′′

markwhd

(
s ′′, coe⇑s′

N(s)
B

)
, ↑s

′
N(s) ◦ ⇑ss′′

when s ′′ @ s ∗/ B

markwhd

(
coe⇑s′

N(s)
A, coe⇑σ′

N(σ)
B

)
,

(
↑σ

′
N(σ) ◦ ⇑σs

)
◦ ↓s

′
N(s)

when A .∗ s @ σ ∗/ B
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Theorem (Typing lifting)

Theorem (Th1.1)

If Γ okCCsubω
and |Γ| `CCω A : s then ψΓ,s is de�ned at A and Γ `CCsubω

ψΓ,s(A) : s : N(s).

For Γ and s given, ψΓ,s(A) is the unique decoration of A up to coe-conversion such that

the latter holds.

Theorem (Th1.2)

If Γ okCCsubω
, Γ `CCsubω

A : s : N(s) for some s and |Γ| `CCω t : |A|, then are de�ned at t

both φΓ with value (t′,B, s ′) such that Γ `CCsubω
t′ : B : s ′, and even ψΓ,A with

Γ `CCsubω
ψΓ,A(t) : A : s. For Γ and A given, ψΓ,A(t) is the unique decoration of t up to

coe-conversion such that the latter holds.

Theorem (Th1.3)

If Γ okCCω then there exists a decoration Γ′ of Γ such that Γ′ okCCsubω
. It is unique given

the sorts of its type declarations, up to coe-conversion of the types appearing.
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Work to be Done
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In the Medium Term

Re�ne the de�nitions to precisely and completely determine the best possible
CICexpl system, the one that will have the best expected properties, notably
through the treatment of inductive types, above (the best) CCsub

ω ;

Confront the implementation of CICexpl in Coq, and the subsequent modi�cations
of the extraction process.

Explore more properties of ., the possible categorical semantics of CCsub
ω and

CICexpl...

Exploration of the similarities of CCsub
ω with the system presented in [GCST19],

designed to hook up the universe Prop of propositions with inter-convertible proof
terms of Coq to the cumulative hierarchy of universes : it is an inductive type
"box" � corresponding to coe⇑Type1Prop

, whose constructor box would correspond to

coe↑Type1Prop

and the destructor to coe↓Type1Prop

;
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Long-Term Perspectives

Another path, in which this work constitutes the �rst steps is the hope, by means
of having explicited the cumulativity of the full CIC universe hierarchy, to arrive at
a better understanding of its �ne structure, and thus � via set theory � to obtain
new results regarding the ordinal strength of this type theory and those that are
related to it.

Another one is to study the feasibility of an interpretation of Prop as a truncation
à la HoTT which, if ever possible, seems to necessarily involve an analysis of the
properties that an explicit encoding of impredicativity in terms of universe
subtyping must verify, also aiming in the long term at a deeper understanding of
impredicativity by reducing it to more elementary components. Further on, this
issue could teach us a lot about the qualitative leap that distinguishes, within the
cone of second-order arithmetic in terms of theories ordered by their expressive
power, its strict subsystems - predicative � from its supersystems � impredicative.
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