Training ENIGMAs, CoPs, and Other Thinking Creatures

Josef Urban
Czech Technical University in Prague

PAAR 2022
August 11, 2022, Haifa

Leibniz's/Hilbert's/Russell's Dream: Let Us Calculate!

Solve all (math, physics, law, economics, society, ...) problems by reduction to logic/computation

[Adapted from: Logicomix: An Epic Search for Truth by A. Doxiadis]

How Do We Automate Math, Science, Programming?

- What is mathematical and scientific thinking?
- Pattern-matching, analogy, induction from examples
- Deductive reasoning
- Complicated feedback loops between induction and deduction
- Using a lot of previous knowledge - both for induction and deduction
- We need to develop such methods on computers
- Are there any large corpora suitable for nontrivial deduction?
- Yes! Large libraries of formal proofs and theories
- So let's develop strong AI on them!

Intuition vs Formal Reasoning - Poincaré vs Hilbert

[Adapted from: Logicomix: An Epic Search for Truth by A. Doxiadis]

Induction/Learning vs Reasoning - Henri Poincaré

- Science and Method: Ideas about the interplay between correct deduction and induction/intuition
- "And in demonstration itself logic is not all. The true mathematical reasoning is a real induction [...]"
- I believe he was right: strong general reasoning engines have to combine deduction and induction (learning patterns from data, making conjectures, etc.)

Learning vs Reasoning - Alan Turing 1950 - Al

- 1950: Computing machinery and intelligence - AI, Turing test
- "We may hope that machines will eventually compete with men in all purely intellectual fields." (regardless of his 1936 undecidability result!)
- last section on Learning Machines:
- "But which are the best ones [fields] to start [learning on] with?"
- "... Even this is a difficult decision. Many people think that a very abstract activity, like the playing of chess, would be best."
- Why not try with math? It is much more (universally?) expressive ...

History and Motivation for AI/ML/TP

- Intuition vs Formal Reasoning - Poincaré vs Hilbert, Science \& Method
- Turing's 1950 paper: Learning Machines, learn Chess?, undecidability??
- Lenat, Langley, etc: manually-written heuristics, learn Kepler laws,...
- Denzinger, Schulz, Goller, Fuchs - late 90's, ATP-focused:
- Learning from Previous Proof Experience
- My MSc (1998): Try ILP to learn explainable rules/heuristics from Mizar
- Since: Use large formal math (Big Proof) corpora: Mizar, Isabelle, HOL
- ... to combine/develop symbolic/statistical deductive/inductive ML/TP/AI
- ... hammer-style methods, feedback loops, internal guidance, ...
- More details - AGl'18 keynote: https://bit.ly/3qifhg4
- Al vs DL: Ben Goertzel's Prague talk: https://youtu.be/zt2HSTuGBn8
- Big AI visions: automate/verify math, science, law, (Leibniz, McCarthy, ..)
- Practical impact: boost today's large ITP verification projects

Why Do This Today?

1 Practically Useful for Verification of Complex HW/SW and Math

- Formal Proof of the Kepler Conjecture (2014 - Hales - 20k lemmas)
- Formal Proof of the Feit-Thompson Theorem (2 books, 2012 - Gonthier)
- Verification of several math textbooks and CS algorithms
- Verification of compilers (CompCert)
- Verification of OS microkernels (seL4), HW chips (Intel), transport, finance,
- Verification of cryptographic protocols (Amazon), etc.

2 Blue Sky AI Visions:

- Get strong AI by learning/reasoning over large KBs of human thought?
- Big formal theories: good semantic approximation of such thinking KBs?
- Deep non-contradictory semantics - better than scanning books?
- Gradually try learning math/science
- automate/verify them, include law, etc. (Leibniz, McCarthy, ..)
- What are the components (inductive/deductive thinking)?
- How to combine them together?

Using Learning to Guide Theorem Proving

- high-level: pre-select lemmas from a large library, give them to ATPs
- high-level: pre-select a good ATP strategy/portfolio for a problem
- high-level: pre-select good hints for a problem, use them to guide ATPs
- low-level: guide every inference step of ATPs (tableau, superposition)
- low-level: guide every kernel step of LCF-style ITPs
- mid-level: guide application of tactics in ITPs
- mid-level: invent suitable ATP strategies for classes of problems
- mid-level: invent suitable conjectures for a problem
- mid-level: invent suitable concepts/models for problems/theories
- proof sketches: explore stronger/related theories to get proof ideas
- theory exploration: develop interesting theories by conjecturing/proving
- feedback loops: (dis)prove, learn from it, (dis)prove more, learn more, ...
- autoformalization: (semi-)automate translation from ${ }^{L A} T_{E} X$ to formal
- ...

AI/TP Examples and Demos

- ENIGMA/hammer proofs of Pythagoras : https://bit.ly/2MVPAn7 (more at http://grid01.ciirc.cvut.cz/~mptp/enigma-ex.pdf) and simplified Carmichael https://bit.ly/3oGBdRz,
- 3-phase ENIGMA: https://bit. ly/3c0Lwa8, https://bit.ly/3BWqR6K
- Long trig proof from 1k axioms: https://bit.ly/2yzoogx
- Extreme Deepire/AVATAR proof of $\epsilon_{0}=\omega^{\omega \omega}$ https://bit.ly/3Ne4wnX
- Hammering demo: http://grid01.ciirc.cvut.cz/~mptp/out4.ogv
- TacticToe on HOL4:
http://grid01.ciirc.cvut.cz/~mptp/tactictoe_demo.ogv
- Tactician for Coq:
https://blaauwbroek.eu/papers/cicm2020/demo.mp4, https://coq-tactician.github.io/demo.html
- Inf2formal over HOL Light:
http://grid01.ciirc.cvut.cz/~mptp/demo.ogv
- QSynt: AI rediscovers the Fermat primality test:
https://www.youtube.com/watch?v=24oejR9wsXs

Today's AI-ATP systems (\star-Hammers)

How much can it do?

- Mizar / MML - MizAR
- Isabelle (Auth, Jinja) - Sledgehammer
- Flyspeck (including core HOL Light and Multivariate) - HOL(y)Hammer
- HOL4 (Gauthier and Kaliszyk)
- CoqHammer (Czajka and Kaliszyk) - about 40\% on Coq standard library $\approx 40-45 \%$ success by 2016, 60\% on Mizar as of 2021

High-level feedback loops - MALARea, ATPBoost

- Machine Learner for Autom. Reasoning (2006) - infinite hammering
- feedback loop interleaving ATP with learning premise selection
- both syntactic and semantic features for characterizing formulas:
- evolving set of finite (counter)models in which formulas evaluated
- winning AI/ATP benchmarks (MPTPChallenge, CASC 08/12/13/18/20)
- ATPBoost (Piotrowski) - recent incarnation focusing on multiple proofs

Prove-and-learn loop on MPTP2078 data set

Prove-and-learn loop on MPTP2078 data set

Number of found proofs per theorem at the end of the loop

FACE_OF_POLYHEDRON_POLYHEDRON

```
let FACE_OF_POLYHEDRON_POLYHEDRON = prove
    ('!s:real^N->bool c. polyhedron s /\ c face_of s ==> polyhedron c',
    REPEAT STRIP_TAC THEN FIRST_ASSUM
        (MP_TAC O GEN_REWRITE_RULE I [POLYHEDRON_INTER_AFFINE_MINIMAL]) THEN
    REWRITE_TAC[RIGHT_IMP_EXISTS_THM; SKOLEM_THM] THEN
    SIMP_TAC[LEFT_IMP_EXISTS_THM; RIGHT_AND_EXISTS_THM; LEFT_AND_EXISTS_THM] THEN
    MAP_EVERY X_GEN_TAC
        [`f:(real^N->bool)->bool`; `a:(real^N->bool)->real^N`;
            `b:(real^N->bool) ->real`] THEN
    STRIP_TAC THEN
    MP_TAC(ISPECL [`s:real^N->bool`; `f:(real^N->bool) ->bool`;
                            `a:(real^N->bool)->real^N`; `b:(real^N->bool)->real`]
            FACE_OF_POLYHEDRON_EXPLICIT) THEN
    ANTS_TAC THENL [ASM_REWRITE_TAC[] THEN ASM_MESON_TAC[]; ALL_TAC] THEN
    DISCH_THEN(MP_TAC O SPEC `C:real^N->bool`) THEN ASM_REWRITE_TAC[] THEN
    ASM_CASES_TAC `C:real^N->bool = {}' THEN
    ASM_REWRITE_TAC[POLYHEDRON_EMPTY] THEN
    ASM_CASES_TAC `c:real^N->bool = s` THEN ASM_REWRITE_TAC[] THEN
    DISCH_THEN SUBST1_TAC THEN MATCH_MP_TAC POLYHEDRON_INTERS THEN
    REWRITE_TAC[FORALL_IN_GSPEC] THEN
    ONCE_REWRITE_TAC[SIMPLE_IMAGE_GEN] THEN
    ASM_SIMP_TAC[FINITE_IMAGE; FINITE_RESTRICT] THEN
    REPEAT STRIP_TAC THEN REWRITE_TAC[IMAGE_ID] THEN
    MATCH_MP_TAC POLYHEDRON_INTER THEN
    ASM_REWRITE_TAC[POLYHEDRON_HYPERPLANE]); ;
```


FACE_OF_POLYHEDRON_POLYHEDRON

$$
\text { polyhedron } s / \backslash c \text { face_of } s==>\text { polyhedron } c
$$

HOL Light proof: could not be re-played by ATPs.
Alternative proof found by a hammer based on FACE_OF_STILLCONVEX: Face t of a convex set s is equal to the intersection of s with the affine hull of t.

```
FACE_OF_STILLCONVEX:
    !s t:real^N->bool. convex s ==>
    (t face_of s <=>
    t SUBSET s /\ convex(s DIFF t) /\ t = (affine hull t) INTER s)
POLYHEDRON_IMP_CONVEX:
    !s:real^N->bool. polyhedron s ==> convex s
POLYHEDRON_INTER:
    !s t:real^N->bool. polyhedron s /\ polyhedron t
        ==> polyhedron (s INTER t)
POLYHEDRON_AFFINE_HULL:
    !s. polyhedron(affine hull s)
```


Low-level: Statistical Guidance of Connection Tableau

- learn guidance of every clausal inference in connection tableau (leanCoP)
- set of first-order clauses, extension and reduction steps
- proof finished when all branches are closed
- a lot of nondeterminism, requires backtracking
- Iterative deepening used in leanCoP to ensure completeness
- good for learning - the tableau compactly represents the proof state

Clauses:	Closed Connection Tableau:
$c_{1}: P(x)$	$R(a, b)$
$c_{2}: R(x, y) \vee \neg P(x) \vee Q(y)$	$\neg P(a)$
$c_{3}: S(x) \vee \neg Q(b)$	$\neg R(a, b)$
$c_{4}: \neg S(x) \vee \neg Q(x)$	
$c_{5}: \neg Q(x) \vee \neg R(a, x)$	
$c_{6}: \neg R(a, x) \vee Q(x)$	$\neg Q(b)$

Statistical Guidance of Connection Tableau

- MaLeCoP (2011): first prototype Machine Learning Connection Prover
- extension rules chosen by naive Bayes trained on good decisions
- training examples: tableau features plus the name of the chosen clause
- initially slow: off-the-shelf learner 1000 times slower than raw leanCoP
- 20-time search shortening on the MPTP Challenge
- second version: 2015, with C. Kaliszyk
- both prover and naive Bayes in OCAML, fast indexing
- Fairly Efficient MaLeCoP = FEMaLeCoP
- 15% improvement over untrained leanCoP on the MPTP2078 problems
- using iterative deepening - enumerate shorter proofs before longer ones

Statistical Guidance of Connection Tableau - rICoP

- 2018: stronger learners via C interface to OCAML (boosted trees)
- remove iterative deepening, the prover can go arbitrarily deep
- added Monte-Carlo Tree Search (MCTS)
- MCTS search nodes are sequences of clause application
- a good heuristic to explore new vs exploit good nodes:

$$
\frac{w_{i}}{n_{i}}+c \cdot p_{i} \cdot \sqrt{\frac{\ln N}{n_{i}}}
$$

(UCT - Kocsis, Szepesvari 2006)

- learning both policy (clause selection) and value (state evaluation)
- clauses represented not by names but also by features (generalize!)
- binary learning setting used: | proof state | clause features |
- mostly term walks of length 3 (trigrams), hashed into small integers
- many iterations of proving and learning

Tree Example

Statistical Guidance of Connection Tableau - rICoP

- On 32k Mizar40 problems using 200k inference limit
- nonlearning CoPs:

System	leanCoP	bare prover	rlCoP no policy/value (UCT only)
Training problems proved	10438	4184	7348
Testing problems proved	$\mathbf{1 1 4 3}$	431	804
Total problems proved	11581	4615	8152

- rICoP with policy/value after 5 proving/learning iters on the training data
- $1624 / 1143=42.1 \%$ improvement over leanCoP on the testing problems

Iteration	1	2	3	4	5	6	7	8
Training proved	12325	13749	14155	14363	14403	14431	14342	$\mathbf{1 4 4 9 8}$
Testing proved	1354	1519	1566	1595	$\mathbf{1 6 2 4}$	1586	1582	1591

More trees

Recent CoP Mutants: FLoP, GNN, RNN, lazyCoP

- FLoP - Finding Longer Proofs (Zombori et al, 2019)

- Curriculum Learning used for connection tableau over Robinson Arithmetic
- addition and multiplication learned perfectly from $1 * 1=1$
- headed towards learning algorithms/decision procedures from math data
- currently black-box, combinations with symbolic methods (ILP) our next target
- Using RNNs for better tableau encoding, prediction of actions ...
- ... even guessing (decoding) next tableau literals (Piotrowski 2020)
- plCoP (Zombori 20), GNN-CoP (Olsak 20), lazyCoP (Rawson) ...
- Zombori: learning new explainable Prolog actions (tactics) from proofs

ENIGMA (2017): Guiding the Best ATPs like E Prover

- ENIGMA (Jan Jakubuv, Zar Goertzel, Karel Chvalovsky, others)

- The proof state are two large heaps of clauses processed/unprocessed
- learn on E's proof search traces, put classifier in E
- positive examples: clauses (lemmas) used in the proof
- negative examples: clauses (lemmas) not used in the proof
- 2021 multi-phase architecture (combination of different methods):
- fast gradient-boosted decision trees (GBDTs) used in 2 ways
- fast logic-aware graph neural network (GNN - Olsak) run on a GPU server
- logic-based subsumption using fast indexing (discrimination trees - Schulz)
- The GNN scores many clauses (context/query) together in a large graph
- Sparse - vastly more efficient than transformers (~100k symbols)
- 2021: leapfrogging and Split\&Merge:
- aiming at learning reasoning/algo components

Feedback prove/learn loop for ENIGMA on Mizar data

- Done on 57880 Mizar problems recently
- Serious ML-guidance breakthrough applied to the best ATPs
- Ultimately a 70\% improvement over the original strategy in 2019
- From 14933 proofs to 25397 proofs (all 10s CPU - no cheating)
- Went up to 40k in more iterations and 60s time in 2020
- 75\% of the Mizar corpus reached in July 2021 - higher times and many runs: https://github.com/ai4reason/ATP_Proofs

	\mathcal{S}	$\mathcal{S} \odot \mathcal{M}_{9}^{0}$	$\mathcal{S} \oplus \mathcal{M}_{9}^{0}$	$\mathcal{S} \odot \mathcal{M}_{9}^{1}$	$\mathcal{S} \oplus \mathcal{M}_{9}^{1}$	$\mathcal{S} \odot \mathcal{M}_{9}^{2}$	$\mathcal{S} \oplus \mathcal{M}_{9}^{2}$	$\mathcal{S} \odot \mathcal{M}_{9}^{3}$	$\mathcal{S} \oplus \mathcal{M}_{9}^{3}$
Solved	$\mathbf{1 4 9 3 3}$	16574	20366	21564	22839	22413	23467	22910	23753
$\mathcal{S} \%$	$+0 \%$	$+10.5 \%$	$+35.8 \%$	$+43.8 \%$	$+52.3 \%$	$+49.4 \%$	$+56.5 \%$	$+52.8 \%$	+58.4
$\mathcal{S}+$	+0	+4364	+6215	+7774	+8414	+8407	+8964	+8822	+9274
$\mathcal{S}-$	-0	-2723	-782	-1143	-508	-927	-430	-845	-454
			$\mathcal{S} \odot \mathcal{M}_{12}^{3}$	$\mathcal{S} \oplus \mathcal{M}_{12}^{3}$	$\mathcal{S} \odot \mathcal{M}_{16}^{3}$	$\mathcal{S} \oplus \mathcal{M}_{16}^{3}$			
		solved	24159	24701	25100	25397			
		$\mathcal{S} \%$	$+61.1 \%$	$+64.8 \%$	$+68.0 \%$	$+70.0 \%$			
		$\mathcal{S}+$	+9761	+10063	+10476	+10647			

ENIGMA Anonymous: Learning from patterns only

- The GNN and GBDTs only learn from formula structure, not symbols
- Not from symbols like + and * as Transformer \& Co.
- E.g., learning on additive groups thus transfers to multiplicative groups
- Evaluation of old-Mizar ENIGMA on 242 new Mizar articles
- 13370 new theorems, $>50 \%$ of them with new terminology:
- The 3-phase ENIGMA is 58% better on them than unguided E
- While 53.5% on the old Mizar (where this ENIGMA was trained)
- Generalizing, analogizing and transfer abilities unusual in the large transformer models
- Recently also trained on 300k Isabelle/AFP problems (Sledgehammer)

3-phase Anonymous ENIGMA

The 3-phase ENIGMA (single strategy) solves in 30s 56.4\% of Mizar (bushy)

Given Clause Loop in E + ML Guidance

3-phase ENIGMA

Neural Clause Selection in Vampire (M. Suda)

Deepire: Similar to ENIGMA:

- build a classifier for recognizing good clauses
- good are those that appeared in past proofs

Deepire's contributions:

- Learn from clause derivation trees only Not looking at what it says, just who its ancestors were.
- Integrate using layered clause queues

A smooth improvement of the base clause selection strategy.

- Tree Neural Networks: constant work per derived clause
- A signature agnostic approach
- Delayed evaluation trick (not all derived need to be evaluated)

Preliminary Evaluation on Mizar "57880"

- Learn from 63595 proofs of 23071 problems (three 30s runs)
- Deepire solves 26217 (i.e. +4054) problems in a single 10s run

TacticToe: mid-level ITP Guidance (Gauthier'17,18)

- TTT learns from human and its own tactical HOL4 proofs

- No translation or reconstruction needed - native tactical proofs
- Fully integrated with HOL4 and easy to use
- Similar to rlCoP: policy/value learning for applying tactics in a state
- However much more technically challenging - a real breakthrough:
- tactic and goal state recording
- tactic argument abstraction
- absolutization of tactic names
- nontrivial evaluation issues
- these issues have often more impact than adding better learners
- policy: which tactic/parameters to choose for a current goal?
- value: how likely is this proof state succeed?
- 66\% of HOL4 toplevel proofs in 60s (better than a hammer!)
- similar recent work for Isabelle (Nagashima 2018), HOL Light (Google)

Tactician: Tactical Guidance for Coq (Blaauwbroek'20)

- Tactical guidance of Coq proofs

- Technically very challenging to do right - the Coq internals again nontrivial
- 39.3% on the Coq standard library, 56.7% in a union with CoqHammer (orthogonal)
- Fast approximate hashing for k-NN makes a lot of difference
- Fast re-learning more important than "cooler"/slower learners
- Fully integrated with Coq, should work for any development
- User friendly, installation friendly, integration friendly and maintenance friendly
- Took several years, but could become a very common tool for Coq formalizers

More on Conjecturing in Mathematics

- Targeted: generate intermediate lemmas (cuts) for a harder conjecture
- Unrestricted (theory exploration):
- Creation of interesting conjectures based on the previous theory
- One of the most interesting activities mathematicians do (how?)
- Higher-level AI/reasoning task - can we learn it?
- If so, we have solved math:
- ... just (recursively) divide Fermat into many subtasks ...
- ... and conquer (I mean: hammer) them away

Conjecturing and Proof Synthesis by Neural Language models

- Karpathy'15-RNN experiments with generating fake Math over Stacks
- I have tried to use that for formal math in 2016 but it looked weak
- GPT $(-2,3)$ looks stronger
- Renewed experiments in 2020 on:
- All Mizar articles, stripped of comments and concatenated together (78M)
- Articles with added context/disambiguation (156M) (types, names, thesis)
- TPTP proofs of 28271 Mizar/MPTP theorems by E/ENIGMA (658M)
- Just the conjecture and premises needed for the 28271 proofs printed in prefix notation
- Quite interesting results, server for Mizar authors
- Quickly taken up by others on HOL, Isabelle, MetaMath ...

Can you find the flaw(s) in this fake GPT-2 proof?

```
0 Applications Places ©
emacs@dell
File Edit Options Buffers Tools Index Mizar Hide/Show Help
```



```
:: generated theorem with "proof"
theorem Th23: :: STIRL2_1:23
for X, Y being finite set st not X is empty & X C= Y
& card }X=\operatorname{card}Y\mathrm{ holds X = Y
proof
    let X, Y be finite set ;
:: thesis: not X is empty & X c= Y & card X = card Y implies X = Y
    assume that
    A1: not }X\mathrm{ is empty and A2: X C= Y and A3: card X = card Y;
:: thesis: X = Y
    card (Y\X) = (card Y) - (card X) by A1, A3, CARD_2:44;
    then A4: card (Y\X) = ((card Y) - 1) - (card X) by CARD_1:30;
    X = Y \X by A2, A3, Th22;
    hence X = Y by A4, XBOOLE_0:def_10;
:: thesis: verum
end;
```

-:--- card_tst.miz 99\% L2131 (Mizar Errors:13 hs Undo-Tree)

Figure: Fake full declarative GPT-2 "proof" - typechecks!

A correct conjecture that was too hard to prove

- Kinyon and Stanovsky (algebraists) confirmed that this cut is valid:

```
theorem Th10: :: GROUPP_1:10
for G being finite Group for N being normal Sulogroup of G st
N is Subgroup of center G & G ./. N is cyclic holds G is commutative
The generalization that avoids finiteness:
for G being Group for N being normal Subgroup of G st
N is Subgroup of center G & G ./. N is cyclic holds G is commutative
```


More cuts

- In total 33100 in this experiment
- Ca 9k proved by trained ENIGMA
- Some are clearly false, yet quite natural to ask:

```
theorem :: SINCOS10:17
sec is increasing on [0, pi/2)
leads to conjecturing the following:
Every differentiable function is increasing.
```


QSynt: Semantics-Aware Synthesis of Math Objects

- Gauthier'19-22

- Synthesize math expressions based on semantic characterizations
- i.e., not just on the syntactic descriptions (e.g. proof situations)
- Tree Neural Nets and RL (MCTS, policy/value), used for:
- Guiding synthesis of a diophantine equation characterizing a given set
- Guiding synthesis of combinators for a given lambda expression
- 2022: invention of programs for OEIS sequences from scratch
- 50k sequences discovered so far:
https://www.youtube.com/watch?v=24oejR9wsXs, http://grid01.ciirc.cvut.cz/~thibault/qsynt.html
- Many conjectures invented: 4 different characterizations of primes
- Non-neural (Turing complete) computing and semantics collaborates with the statistical learning

QSynt: synthesizing the programs/expressions

- Inductively defined set P of our programs and subprograms,
- and an auxiliary set F of binary functions (higher-order arguments)
- are the smallest sets such that $0,1,2, x, y \in P$, and if $a, b, c \in P$ and $f, g \in F$ then:

$$
\begin{aligned}
& a+b, a-b, a \times b, a \operatorname{div} b, a \bmod b, \operatorname{cond}(a, b, c) \in P \\
& \lambda(x, y) \cdot a \in F, \operatorname{loop}(f, a, b), \operatorname{loop} 2(f, g, a, b, c), \operatorname{compr}(f, a) \in P
\end{aligned}
$$

- Programs are built in reverse polish notation
- Start from an empty stack
- Use ML to repeatedly choose the next operator to push on top of a stack
- Example: Factorial is $\operatorname{loop}(\lambda(x, y) . x \times y, x, 1)$, built by:

$$
\begin{gathered}
{[] \rightarrow_{x}[x] \rightarrow_{y}[x, y] \rightarrow_{x}[x \times y] \rightarrow_{x}[x \times y, x]} \\
\rightarrow_{1}[x \times y, x, 1] \rightarrow_{\text {Ioop }}[\operatorname{loop}(\lambda(x, y) . x \times y, x, 1)]
\end{gathered}
$$

QSynt: Training of the Neural Net Guiding the Search

- The triple $\left(\left(\right.\right.$ head $\left.([x \times y, x],[1,1,2,6,24,120 \ldots]), \rightarrow_{1}\right)$ is a training example extracted from the program for factorial $\operatorname{loop}(\lambda(x, y) . x \times y, x, 1)$
- \rightarrow_{1} is the action (adding 1 to the stack) required on $[x \times y, x]$ to progress towards the construction of $\operatorname{loop}(\lambda(x, y) . x \times y, x, 1)$.

QSynt program search - Monte Carlo search tree

7 iterations of the search loop gradually extending the search tree. The set of the synthesized programs after the 7th iteration is $\{1, x, y, x \times y, x \bmod y\}$.

QSynt web interface for program invention

```
* Applications Places @ () G
grid01.ciirc.cvut.cz/~thibault/qsynt.html - Chromium
\leftarrow C A Not secure | grid01.ciirc.cvut.cz/~thibaul/qsynt.html
```

```
- QSynt:Al rediscovers Fer x 6 grid01.ciirc.cvut.cz/~thiba
```

```
- QSynt:Al rediscovers Fer x 6 grid01.ciirc.cvut.cz/~thiba
```


QSynt: Program Synthesis for Integer Sequences

```
Propose a sequence of integers:
\begin{tabular}{llllllll}
2 & 3 & 5 & 7 & 11 & 13 & 17 & 19 \\
23 & 29
\end{tabular}
Timeout (maximum 300s)
10
Generated integers (maximum 100)
32
```


Send Reset

```
A few sequences you can try:
0110101000101000101
014916212528363749
01361015
235711131719232931374143
112624120
2416256
```


QSynt inventing Fermat pseudoprimes

Positive integers k such that $2^{k} \equiv 2 \bmod k .(341=11 * 31$ is the first non-prime $)$

First 16 generated numbers ($f(0), f(1), f(2), \ldots)$:
$235411131719232931 \quad 3741434753$
Generated sequence matches best with: A15919(1-75), A100726(0-59), A40(0-58)
Program found in 5.81 seconds
$f(x):=2+\operatorname{compr}\left(\backslash x \cdot \operatorname{loop}\left(\backslash(x, 1) \cdot 2^{*} x+2, x, 2\right) \bmod (x+2), x\right)$
Run the equivalent Python program here or in the window below:

BRVthon

Tutorial
Demo
Documentation
Console
Editor Gallery Resources

Brython version: 3.10.6
run Python Javascript Share code

Lucas/Fibonacci characterization of (pseudo)primes

```
input sequence: 2,3,5,7,11,13,17,19,23,29
invented output program:
f(x) := compr(\(x,y).(loop2(\(x,y).x + y, \(x,y).x, x, 1, 2) - 1)
    mod}(1+x),x+1)+
human conjecture: x is prime iff? x divides (Lucas(x) - 1)
PARI program:
? lucas(n) = fibonacci(n+1)+fibonacci(n-1)
? b (n) = (lucas(n) - 1) % n
Counterexamples (Bruckman-Lucas pseudoprimes):
? for(n=1,4000,if(b(n)==0,if(isprime(n),0,print(n))))
1
7 0 5
2465
2737
3745
```


QSynt inventing primes using Wilson's theorem

n is prime iff $(n-1)!+1$ is divisible by n (i.e.: $(n-1)!\equiv-1 \bmod n$)

First 32 generated numbers $(f(0), f(1), f(2), \ldots)$:
01101010001010001010001000001010
Generated sequence matches best with: A10051(0-100), A252233(0-29), A283991(0-24)
Program found in 5.17 seconds
$f(x):=\left(\operatorname{loop}\left(\backslash(x, i) . x^{*} i, x, x\right) \bmod (x+1)\right) \bmod 2$
Run the equivalent Python program here or in the window below:

BRVthon

Tutorial
Demo
Documentation
Console
Editor
Gallery

Brython version: 3.10.6
run Python Javascript Share code

```
    1. def f1(X):
    2. }x=
        for i in range (1,x + 1):
            x = x * i
    return x
def f0(X):
    return (f1(X) % (X + 1)) % 2
0 - for }x\mathrm{ in range(32):
        print (f0(x))
    1 2
```


Are two QSynt programs equivalent?

- As with primes, we often find many programs for one OEIS sequence
- It may be quite hard to see that the programs are equivalent
- A simple example for $0,2,4,6,8, \ldots$ with two programs f and g :
- $f(0)=0, f(n)=2+f(n-1)$ if $n>0$
- $g(n)=2 * n$
- conjecture: $\forall n \in \mathbb{N} . g(n)=f(n)$
- We can ask mathematicians, but we have thousands of such problems
- Or we can try to ask our ATPs (and thus create a large ATP benchmark)!
- Here is one SMT encoding by Mikolas Janota:

```
(set-logic UFLIA)
(define-fun-rec f ((x Int)) Int (ite (<= x 0) 0 (+ 2 (f (- x 1))))
(assert (exists ((c Int)) (and (> c 0) (not (= (f c) (* 2 c))))))
(check-sat)
```


Inductive proof by Vampire of the $f=g$ equivalence

```
% SZS output start Proof for rec2
1. f(X0) = $ite($lesseq(X0,0), 0,$sum(2,f($difference(X0,1)))) [input]
2. ? [X0 : $int] : ($greater(X0,0) & ~f(X0) = $product (2,X0)) [input]
[...]
43. ~$less(0,X0) | iG0(X0) = $sum(2,iG0($sum(X0,-1))) [evaluation 40]
44. (! [X0 : $int] : (($product (2,X0) = iG0(X0) & ~ $less(X0,0)) => $product (2,$sum(X0,1)) = iG0($sum(X0,1)))
    & $product (2,0) = iG0(0)) => ! [X1 : $int] : ($less(0,X1) => $product (2,X1) = iG0(X1)) [induction hypo]
[...]
49. $product (2,0) != iG0(0) | $product(2,$sum(sK3,1)) != iG0($sum(sK3,1)) | ~$less(0,sk1) [resolution 48,41]
50. $product (2,0) != iG0(0) | $product(2,sK3) = iG0(sK3) | ~$less(0,sK1) [resolution 47,41]
51. $product (2,0) != iG0(0) | ~$less(sK3,0) | ~$less(0,sK1) [resolution 46,41]
52. 0 != iG0(0) | $product(2,$sum(sK3,1)) != iG0($sum(sK3,1)) | ~$less(0,sK1) [evaluation 49]
53. 0 != iG0(0) | $product(2,sK3) = iG0(sK3) | ~$less(0,sK1) [evaluation 50]
54.0 != iG0(0) | ~$less(sK3,0) | ~$less(0,sK1) [evaluation 51]
55. 0 != iG0(0) | ~$less(sK3,0) [subsumption resolution 54,39]
57. 1 <=> $less(sK3,0) [avatar definition]
59. ~$less(sK3,0) <- (~1) [avatar component clause 57]
61. 2 <=> 0 = iG0(0) [avatar definition]
64. ~1 | ~2 [avatar split clause 55,61,57]
65. 0 != iG0(0) | $product (2,sK3) = iG0(sK3) [subsumption resolution 53,39]
67. 3 <=> $product (2,sK3) = iG0(sK3) [avatar definition]
69. $product (2,sK3) = iG0(sK3) <- (3) [avatar component clause 67]
70. 3 | ~2 [avatar split clause 65,61,67]
71. 0 != iG0(0) | $product(2,$sum(sK3,1)) != iG0($sum(sK3,1)) [subsumption resolution 52, 39]
72. $product(2,$sum(1,sK3)) != iG0($sum(1,sK3)) | 0 != iG0(0) [forward demodulation 71,5]
74. 4 <=> $product(2,$sum(1,sK3)) = iG0($sum(1,sK3)) [avatar definition]
76. $product (2,$sum(1,sK3)) != iG0($sum(1,sK3)) <- (~4) [avatar component clause 74]
77. ~2 | ~4 [avatar split clause 72,74,61]
82. 0 = iG0(0) [resolution 36,10]
85. 2 [avatar split clause 82,61]
246. iG0($sum(X1,1)) = $sum(2,iG0($sum($sum(X1,1),-1))) | $less(X1,0) [resolution 43,14]
251. $less(X1,0) | iG0($sum(X1,1)) = $sum(2,iG0(X1)) [evaluation 246]
[...]
1176. $false <- (~1, 3, ~4) [subsumption resolution 1175,1052]
1177. 1 | ~3 | 4 [avatar contradiction clause 1176]
1178. $false [avatar sat refutation 64,70,77,85,1177]
% SZS output end Proof for rec2
% Time elapsed: 0.016 s
```


Neural Autoformalization (Wang et al., 2018)

- generate ca 1M Latex/Mizar pairs based on Bancerek's work
- train neural seq-to-seq translation models (Luong - NMT)
- evaluate on about 100k examples
- many architectures tested, some work much better than others
- very important latest invention: attention in the seq-to-seq models
- more data very important for neural training - our biggest bottleneck (you can help!)
- Recent addition: unsupervised methods (Lample et all 2018) - no need for aligned data!

Neural Autoformalization data

Rendered ${ }^{\text {LAT}} \mathrm{E}_{\mathrm{E}} \mathrm{X}$

$$
\begin{aligned}
& \text { If } X \subseteq Y \subseteq Z \text {, then } X \subseteq Z \\
& X \quad \mathrm{C}=\mathrm{Y} \& \mathrm{Y} \mathrm{C}=\mathrm{Z} \text { implies } \mathrm{X} \quad \mathrm{c}=\mathrm{Z}
\end{aligned}
$$

Mizar

Tokenized Mizar

$$
\mathrm{X} \text { C= Y \& Y C= Z implies X C= Z ; }
$$

LATEX

```
If $X \subseteq Y \subseteq Z$, then $X \subseteq Z$.
```

Tokenized ${ }^{A T} T_{E} X$

```
If $ X \subseteq Y \subseteq Z $ , then $ X \subseteq Z $ .
```


Neural Autoformalization results

Parameter	Final Test Perplexity	Final Test BLEU	Identical Statements (\%)	Identical No-overlap (\%)
128 Units	3.06	41.1	$40121(38.12 \%)$	$6458(13.43 \%)$
256 Units	1.59	64.2	$63433(60.27 \%)$	$19685(40.92 \%)$
512 Units	1.6	67.9	$66361(63.05 \%)$	$21506(44.71 \%)$
1024 Units	$\mathbf{1 . 5 1}$	61.6	$\mathbf{6 9 1 7 9}(65.73 \%)$	$\mathbf{2 2 9 7 8}(\mathbf{4 7 . 7 7 \%)}$
2048 Units	2.02	60	$59637(56.66 \%)$	$16284(33.85 \%)$

Neural Fun - Performance after Some Training

Rendered ${ }^{14} T_{E} X$ Input ${ }_{L A T} T_{E X}$

Correct

Snapshot1000
Snapshot2000
Snapshot3000

Snapshot4000
Snapshot5000
Snapshot6000
Snapshot7000

Suppose s_{8} is convergent and s_{7} is convergent . Then $\lim \left(s_{8}+s_{7}\right)=\lim s_{8}+\lim s_{7}$

```
Suppose $ { s _ { 8 } } $ is convergent and $ { s _ { 7 } }
$ is convergent . Then $ \mathop { \rm lim } ( { s _ { 8 }
} { + } { s _ { 7 } } ) \mathrel { = } \mathop { \rm lim }
{s_ { 8 } } { + } \mathop {\rm lim } {s _ { 7 } } $.
seq1 is convergent & seq2 is convergent implies lim ( seq1
+ seq2 ) = ( lim seq1 ) + ( lim seq2 ) ;
x in dom f implies ( x * y ) * ( f | ( x | ( y | ( y | y )
) ) ) = ( x | ( y | ( y | ( y | y ) ) ) ) ) ;
seq is summable implies seq is summable ;
seq is convergent & lim seq = Oc implies seq = seq ;
seq is convergent & lim seq = lim seq implies seq1 + seq2
is convergent ;
seq1 is convergent & lim seq2 = lim seq2 implies lim_inf
seq1 = lim_inf seq2 ;
seq is convergent & lim seq = lim seq implies seq1 + seq2
is convergent ;
seq is convergent & seq9 is convergent implies
lim ( seq + seq9 ) = ( lim seq ) + ( lim seq9 ) ;
```


Unsupervised NMT Fun on Short Formulas

```
len <* a *> = 1 ;
assume i < len q ;
len <* q *> = 1 ;
s = apply ( v2 , v1 ast t ) ;
s. ( i + 1 ) = tt . ( i + 1 )
1 + j <= len v2;
1 + j + 0 <= len v2 + 1 ;
let i be Nat ;
assume v is_applicable_to t ;
let }t\mathrm{ be type of T ;
a ast t in downarrow t ;
t9 in types a ;
a ast t <= t ;
A is_applicable_to t ;
Carrier ( f ) C= B
u in B or u in { V } ;
F . w in w & F . w in I ;
GG . Y in rng HH ;
a * L = Z_ZeroLC ( V ) ;
not u in { v } ;
u <> v ;
v - w = v1 - w1 ;
v + w = v1 + w1 ;
x in A & y in A ;
```

```
len <* a *> = 1 ;
```

len <* a *> = 1 ;
i < len q ;
i < len q ;
len <* q *> = 1 ;
len <* q *> = 1 ;
s = apply (v2 , v1) . t ;
s = apply (v2 , v1) . t ;
s. (i + 1) = taul. (i + 1)
s. (i + 1) = taul. (i + 1)
1 + j <= len v2 ;
1 + j <= len v2 ;
1 + j + 0 <= len v2 + 1 ;
1 + j + 0 <= len v2 + 1 ;
i is_at_least_length_of p ;
i is_at_least_length_of p ;
not v is applicable ;
not v is applicable ;
t is_orientedpath_of v1 , v2 , T ;
t is_orientedpath_of v1 , v2 , T ;
a *' in downarrow t ;
a *' in downarrow t ;
t '2 in types a ;
t '2 in types a ;
a *' <= t ;
a *' <= t ;
A is applicable ;
A is applicable ;
support ppf n c= B
support ppf n c= B
u in B or u in { v } ;
u in B or u in { v } ;
F . w in F \& F . w in I ;
F . w in F \& F . w in I ;
G0 . y in rng (H1 ./. y) ;
G0 . y in rng (H1 ./. y) ;
a * L = ZeroLC (V) ;
a * L = ZeroLC (V) ;
u >> v ;
u >> v ;
u <> v ;
u <> v ;
vW = v1 - W1 ;
vW = v1 - W1 ;
v + w = v1 + w1 ;
v + w = v1 + w1 ;
assume [x , y] in A ;

```
assume [ x , y ] in A ;
```


Future: AITP Challenges/Bets from 2014

- 3 AITP bets from my 2014 talk at Institut Henri Poincare
- In 20 years, 80\% of Mizar and Flyspeck toplevel theorems will be provable automatically (same hardware, same libraries as in 2014 - about 40% then)
- In 10 years: 60\% (DONE already in 2021-3 years ahead of schedule)
- In 25 years, 50% of the toplevel statements in LaTeX-written Msc-level math curriculum textbooks will be parsed automatically and with correct formal semantics (this may be faster than I expected)
- My (conservative?) estimate when we will do Fermat:
- Human-assisted formalization: by 2050
- Fully automated proof (hard to define precisely): by 2070
- See the Foundation of Math thread: https://bit.ly/300k9Pm
- Big challenge: Learn complicated symbolic algorithms (not black box motivates also our OEIS research)

Acknowledgments

- Prague Automated Reasoning Group http://arg.ciirc.cvut.cz/:
- Jan Jakubuv, Chad Brown, Martin Suda, Karel Chvalovsky, Bob Veroff, Zar Goertzel, Bartosz Piotrowski, Lasse Blaauwbroek, Martin Smolik, Jiri Vyskocil, Petr Pudlak, David Stanovsky, Krystof Hoder, ...
- HOL(y)Hammer group in Innsbruck:
- Cezary Kaliszyk, Thibault Gauthier, Michael Faerber, Yutaka Nagashima, Shawn Wang
- ATP and ITP people:
- Stephan Schulz, Geoff Sutcliffe, Andrej Voronkov, Kostya Korovin, Larry Paulson, Jasmin Blanchette, John Harrison, Tom Hales, Tobias Nipkow, Andrzej Trybulec, Piotr Rudnicki, Adam Pease, ...
- Learning2Reason people at Radboud University Nijmegen:
- Herman Geuvers, Tom Heskes, Daniel Kuehlwein, Evgeni Tsivtsivadze,
- Google Research: Christian Szegedy, Geoffrey Irving, Alex Alemi, Francois Chollet, Sarah Loos
- ... and many more ...
- Funding: Marie-Curie, NWO, ERC

Some General and Hammer/Tactical References

- J. C. Blanchette, C. Kaliszyk, L. C. Paulson, J. Urban: Hammering towards QED. J. Formalized Reasoning 9(1): 101-148 (2016)
- Cezary Kaliszyk, Josef Urban: Learning-Assisted Automated Reasoning with Flyspeck. J. Autom. Reason. 53(2): 173-213 (2014)
- Cezary Kaliszyk, Josef Urban: MizAR 40 for Mizar 40. J. Autom. Reason. 55(3): 245-256 (2015)
- Cezary Kaliszyk, Josef Urban: Learning-assisted theorem proving with millions of lemmas. J. Symb. Comput. 69: 109-128 (2015)
- Jasmin Christian Blanchette, David Greenaway, Cezary Kaliszyk, Daniel Kühlwein, Josef Urban: A Learning-Based Fact Selector for Isabelle/HOL. J. Autom. Reason. 57(3): 219-244 (2016)
- Bartosz Piotrowski, Josef Urban: ATPboost: Learning Premise Selection in Binary Setting with ATP Feedback. IJCAR 2018: 566-574
- T. Gauthier, C. Kaliszyk, J. Urban, R. Kumar, M. Norrish: Learning to Prove with Tactics. CoRR abs/1804.00596 (2018).
- Lasse Blaauwbroek, Josef Urban, Herman Geuvers: Tactic Learning and Proving for the Coq Proof Assistant. LPAR 2020: 138-150
- Lasse Blaauwbroek, Josef Urban, Herman Geuvers: The Tactician (extended version): A Seamless, Interactive Tactic Learner and Prover for Coq. CoRR abs/2008.00120 (2020)
- L. Czajka, C. Kaliszyk: Hammer for Coq: Automation for Dependent Type Theory. J. Autom. Reasoning 61(1-4): 423-453 (2018)
- G. Irving, C. Szegedy, A. Alemi, N. Eén, F. Chollet, J. Urban: DeepMath - Deep Sequence Models for Premise Selection. NIPS 2016: 2235-2243
- C. Kaliszyk, J. Urban, J. Vyskocil: Efficient Semantic Features for Automated Reasoning over Large Theories. IJCAI 2015: 3084-3090
- J. Urban, G. Sutcliffe, P. Pudlák, J. Vyskocil: MaLARea SG1- Machine Learner for Automated Reasoning with Semantic Guidance. IJCAR 2008: 441-456
- J. Urban, J. Vyskocil: Theorem Proving in Large Formal Mathematics as an Emerging AI Field. LNCS 7788, 240-257, 2013.

Some References on E/ENIGMA, CoPs and Related

- Stephan Schulz: System Description: E 1.8. LPAR 2013: 735-743
- S. Schulz, Simon Cruanes, Petar Vukmirovic: Faster, Higher, Stronger: E 2.3. CADE 2019: 495-507
- J. Jakubuv, J. Urban: Extending E Prover with Similarity Based Clause Selection Strategies. CICM 2016: 151-156
- J. Jakubuv,J. Urban: ENIGMA: Efficient Learning-Based Inference Guiding Machine.CICM 2017:292-302
- Cezary Kaliszyk, Josef Urban, Henryk Michalewski, Miroslav Olsák: Reinforcement Learning of Theorem Proving. NeurIPS 2018: 8836-8847
- Zarathustra Goertzel, Jan Jakubuv, Stephan Schulz, Josef Urban: ProofWatch: Watchlist Guidance for Large Theories in E. ITP 2018: 270-288
- S. M. Loos, G. Irving, C. Szegedy, C. Kaliszyk: Deep Network Guided Proof Search. LPAR 2017: 85-105
- Karel Chvalovský, Jan Jakubuv, Martin Suda, Josef Urban: ENIGMA-NG: Efficient Neural and Gradient-Boosted Inference Guidance for E. CADE 2019: 197-215
- Jan Jakubuv, Josef Urban: Hammering Mizar by Learning Clause Guidance. ITP 2019: 34:1-34:8
- Zarathustra Goertzel, Jan Jakubuv, Josef Urban: ENIGMAWatch: ProofWatch Meets ENIGMA. TABLEAUX 2019: 374-388
- Zarathustra Amadeus Goertzel: Make E Smart Again (Short Paper). IJCAR (2) 2020: 408-415
- Jan Jakubuv, Karel Chvalovský, Miroslav Olsák, Bartosz Piotrowski, Martin Suda, Josef Urban: ENIGMA Anonymous: Symbol-Independent Inference Guiding Machine. IJCAR (2) 2020: 448-463
- Zsolt Zombori, Adrián Csiszárik, Henryk Michalewski, Cezary Kaliszyk, Josef Urban: Towards Finding Longer Proofs. CoRR abs/1905.13100 (2019)
- Zsolt Zombori, Josef Urban, Chad E. Brown: Prolog Technology Reinforcement Learning Prover (System Description). IJCAR (2) 2020: 489-507
- Miroslav Olsák, Cezary Kaliszyk, Josef Urban: Property Invariant Embedding for Automated Reasoning. ECAI 2020: 1395-1402

Some Conjecturing References

- Douglas Bruce Lenat. AM: An Artificial Intelligence Approach to Discovery in Mathematics as Heuristic Search. PhD thesis, Stanford, 1976.
- Siemion Fajtlowicz. On conjectures of Graffiti. Annals of Discrete Mathematics, 72(1-3):113-118, 1988.
- Simon Colton. Automated Theory Formation in Pure Mathematics. Distinguished Dissertations. Springer London, 2012.
- Moa Johansson, Dan Rosén, Nicholas Smallbone, and Koen Claessen. Hipster: Integrating theory exploration in a proof assistant. In CICM 2014, pages 108-122, 2014.
- Thibault Gauthier, Cezary Kaliszyk, and Josef Urban. Initial experiments with statistical conjecturing over large formal corpora. In CICM'16 WiP Proceedings, pages 219-228, 2016.
- Thibault Gauthier, Cezary Kaliszyk: Sharing HOL4 and HOL Light Proof Knowledge. LPAR 2015: 372-386
- Thibault Gauthier. Deep reinforcement learning in HOL4. CoRR, abs/1910.11797, 2019.
- Chad E. Brown and Thibault Gauthier. Self-learned formula synthesis in set theory. CoRR, abs/1912.01525, 2019.
- Bartosz Piotrowski, Josef Urban, Chad E. Brown, Cezary Kaliszyk: Can Neural Networks Learn Symbolic Rewriting? AITP 2019, CoRR abs/1911.04873 (2019)
- Zarathustra Goertzel and Josef Urban. Usefulness of Lemmas via Graph Neural Networks (Extende Abstract). AITP 2019.
- Karel Chvalovský, Thibault Gauthier and Josef Urban: First Experiments with Data Driven Conjecturing (Extended Abstract). AITP 2019.
- Thibault Gauthier: Deep Reinforcement Learning for Synthesizing Functions in Higher-Order Logic. LPAR 2020: 230-248
- Bartosz Piotrowski, Josef Urban: Guiding Inferences in Connection Tableau by Recurrent Neural Networks. CICM 2020: 309-314
- Josef Urban, Jan Jakubuv: First Neural Conjecturing Datasets and Experiments. CICM 2020: 315-323

References on PCFG and Neural Autoformalization

- Cezary Kaliszyk, Josef Urban, Jirí Vyskocil: Learning to Parse on Aligned Corpora (Rough Diamond). ITP 2015: 227-233
- Cezary Kaliszyk, Josef Urban, Jirí Vyskocil, Herman Geuvers: Developing Corpus-Based Translation Methods between Informal and Formal Mathematics: Project Description. CICM 2014: 435-439
- C. Kaliszyk, J. Urban, J. Vyskocil: Automating Formalization by Statistical and Semantic Parsing of Mathematics. ITP 2017: 12-27
- Cezary Kaliszyk, Josef Urban, Jirí Vyskocil: System Description: Statistical Parsing of Informalized Mizar Formulas. SYNASC 2017: 169-172
- Q. Wang, C. Kaliszyk, J. Urban: First Experiments with Neural Translation of Informal to Formal Mathematics. CICM 2018: 255-270
- Qingxiang Wang, Chad E. Brown, Cezary Kaliszyk, Josef Urban: Exploration of neural machine translation in autoformalization of mathematics in Mizar. CPP 2020: 85-98

Thanks and Advertisement

- Thanks for your attention!
- AITP - Artificial Intelligence and Theorem Proving
- September 4-9, 2022, Aussois, France, aitp-conference.org
- ATP/ITP/Math vs AI/Machine-Learning people, Computational linguists
- Discussion-oriented and experimental
- Grown to 80 people in 2019
- Will be hybrid in 2022 as in 2021 and 2020
- Invited talks by J. Araujo, K. Buzzard, J. Brandstetter, W. Dean and A. Naibo, M. Rawson, T. Ringer, S. Wolfram

