
Flexible Proof Production in an Industrial-Strength SMT Solver

Haniel Barbosa,1 Andrew Reynolds,2 Gereon Kremer,3 Hanna Lachnitt,3 Aina Niemetz,3 Andres Nötzli,3 Alex Ozdemir,3

Mathias Preiner,3 Arjun Viswanathan,2 Scott Viteri,3 Yoni Zohar,4 Cesare Tinelli,2 Clark Barrett3

Special thanks: Vińıcius Braga1

1 Universidade Federal de Minas Gerais, 2 The University of Iowa, 3 Stanford University, 4 Bar-Ilan University

Formal
 Verification

Program
Analysis

Automatic
Testing

Program
Synthesis

SMT
Solvers

Called billions of times a day...

▶ Even a tiny fraction of wrong answers is bad

1

Formal
 Verification

Program
Analysis

Automatic
Testing

Program
Synthesis

SMT
Solvers

Called billions of times a day...

▶ Even a tiny fraction of wrong answers is bad

1

Formal
 Verification

Program
Analysis

Automatic
Testing

Program
Synthesis

SMT
Solvers

Called billions of times a day...

▶ Even a tiny fraction of wrong answers is bad

1

Bugs in SMT Solvers

• State-of-the-art solvers are large projects:

• Bitwuzla: 90k LoC (C/C++)

• cvc5: 300k LoC (C++)

• z3: 500k LoC (C++)

• How do developers try to avoid bugs?

• Code reviews

• Testing on benchmark sets

• Random input testing

• But bugs remain:

• Every year SMT-COMP has disagreements between solvers

• Fuzzing tools often find bugs in solvers

2

Bugs in SMT Solvers

• State-of-the-art solvers are large projects:

• Bitwuzla: 90k LoC (C/C++)

• cvc5: 300k LoC (C++)

• z3: 500k LoC (C++)

• How do developers try to avoid bugs?

• Code reviews

• Testing on benchmark sets

• Random input testing

• But bugs remain:

• Every year SMT-COMP has disagreements between solvers

• Fuzzing tools often find bugs in solvers

2

Bugs in SMT Solvers

• State-of-the-art solvers are large projects:

• Bitwuzla: 90k LoC (C/C++)

• cvc5: 300k LoC (C++)

• z3: 500k LoC (C++)

• How do developers try to avoid bugs?

• Code reviews

• Testing on benchmark sets

• Random input testing

• But bugs remain:

• Every year SMT-COMP has disagreements between solvers

• Fuzzing tools often find bugs in solvers

2

SMT Recap

// Input

Many-sorted, first-order logic formula:

String constraint︷ ︸︸ ︷
contains(x, "FLoC")

Boolean connective︷︸︸︷
∧

Integer constraint︷ ︸︸ ︷
|x| ≥ 5

▶ Does there exist a string x s.t. x contains "FLoC" and is at least five characters long?

// Output

• Satisfiable: There are values for which the formula evaluates to true

• Unsatisfiable: No values exist that make the formula true

// Examples of Theories

• Integer/real arithmetic: 5 + x ≥ y

• Bit-vectors: bvule(x, 0xFF)

• Strings: substr(x, 0, 3) = "foo"

3

SMT Recap

// Input

Many-sorted, first-order logic formula:

String constraint︷ ︸︸ ︷
contains(x, "FLoC")

Boolean connective︷︸︸︷
∧

Integer constraint︷ ︸︸ ︷
|x| ≥ 5

▶ Does there exist a string x s.t. x contains "FLoC" and is at least five characters long?

// Output

• Satisfiable: There are values for which the formula evaluates to true

• Unsatisfiable: No values exist that make the formula true

// Examples of Theories

• Integer/real arithmetic: 5 + x ≥ y

• Bit-vectors: bvule(x, 0xFF)

• Strings: substr(x, 0, 3) = "foo"

3

SMT Recap

// Input

Many-sorted, first-order logic formula:

String constraint︷ ︸︸ ︷
contains(x, "FLoC")

Boolean connective︷︸︸︷
∧

Integer constraint︷ ︸︸ ︷
|x| ≥ 5

▶ Does there exist a string x s.t. x contains "FLoC" and is at least five characters long?

// Output

• Satisfiable: There are values for which the formula evaluates to true

• Unsatisfiable: No values exist that make the formula true

// Examples of Theories

• Integer/real arithmetic: 5 + x ≥ y

• Bit-vectors: bvule(x, 0xFF)

• Strings: substr(x, 0, 3) = "foo" 3

Can We Just Certify the Solvers?

• Large, complex code bases are too costly to certify

• A (simpler) certified system can be too slow [FBL18; Fle19]

• Certifying/qualifying a system freezes it, potentially blocking improvements

• Working around adding new features slow and costly [BD18]

4

Alternative: Checking Outputs

For satisfiable inputs: Evaluate formula on values of model generated by solver

contains(x, "FLoC") ∧ |x| ≥ 5

Model: M = {x 7→ "FLoC-2022"}

What about unsatisfiable inputs?

5

Alternative: Checking Outputs

For satisfiable inputs: Evaluate formula on values of model generated by solver

contains(x, "FLoC") ∧ |x| ≥ 5

Model: M = {x 7→ "FLoC-2022"}

What about unsatisfiable inputs?

5

Alternative: Checking Outputs

For satisfiable inputs: Evaluate formula on values of model generated by solver

contains(x, "FLoC") ∧ |x| ≥ 5

Model: M = {x 7→ "FLoC-2022"}

What about unsatisfiable inputs?

5

Alternative: Checking Outputs

For satisfiable inputs: Evaluate formula on values of model generated by solver

contains(x, "FLoC") ∧ |x| ≥ 5

Model: M = {x 7→ "FLoC-2022"}

What about unsatisfiable inputs?

5

Agenda

• Uses of proofs

• Challenges in producing proofs

• Making a solver proof producing:

• Proofs through instrumentation: Primary approach in cvc5

• Proofs through reconstruction: Detailed rewrite proofs in cvc5

• Current and future work

6

Proofs: A New Hope

• Proofs are a justification of the logical reasoning the solver has performed to find a solution

• A proof can be checked independently

• Smaller trusted base: lfsc 5.5k (C++) + 2k (signatures) LoC vs. cvc5 300k LoC

• Proof checking is generally more efficiently than solving the problem

• Confidence in results is decoupled from the solver’s implementation

7

Demo: A Simple Proof

Applications of SMT Proofs

• Strong correctness guarantees

• High-quality proofs can be used to facilitate automated compliance

• Integrations with other systems

• Automation in interactive theorem proving

• External proof cecking can identify bugs in proof rules

• Valuable for debugging

• Formalization of proof rules improves code base

• Uncovers existing issues

• Forces modular and clean code design

• Improves tool robustness

• A rich source of data that can be mined for various purposes (e.g., interpolation)

8

Applications of SMT Proofs: Compliance
A
gr
ee
m
en
t Trusted Core

System

Model

Compliance

Controls

Compliance

Requirements

Compliance

Checker
Solver

Proof Store

Proof Rules

Proof

Checker

Query

Proof Certificate

1○ Formalization 3○ Validation2○ Checking

9

Challenges for SMT proofs

• Collecting and storing proofs efficiently

Many attempts, no silver bullet

[SZS04; KBT+16; HBR+15; Mos08; MB08; Sch13; KV13; WDF+09; BODF09]

• Proofs for sophisticated preprocessing and rewriting techniques

Initial progress but many challenges remain

[BBFF20]

• Proofs for complex procedures in theory solvers (e.g., CAD, strings)

Open

• Standardizing a proof format

Open

• Scalable, trustworthy checking

Many attempts, no silver bullet

[BBP13; SOR+13; EMT+17; BBFF20; SFD21]

10

The Journey

• CVC4’s old proof module struggled with many of those challenges

• For two years, we reimplemented its proof module from scratch

• Producing proofs should not significantly change the behavior of the solver

• Incorporate (almost) all relevant optimizations

• Coarse-grained steps for non-supported inferences

• Modular infrastructure allowing fine-grained error localization

• Independent proof components, combined in a trusted manner

• Every rule associated with an internal proof checker

• Custom eager/lazy generation of proofs

• Proof reconstruction (elaboration) via internal post-processing

• Support internal proof format and conversions to different proof formats

• lfsc, Lean, Alethe

11

The Journey

• CVC4’s old proof module struggled with many of those challenges

• For two years, we reimplemented its proof module from scratch

• Producing proofs should not significantly change the behavior of the solver

• Incorporate (almost) all relevant optimizations

• Coarse-grained steps for non-supported inferences

• Modular infrastructure allowing fine-grained error localization

• Independent proof components, combined in a trusted manner

• Every rule associated with an internal proof checker

• Custom eager/lazy generation of proofs

• Proof reconstruction (elaboration) via internal post-processing

• Support internal proof format and conversions to different proof formats

• lfsc, Lean, Alethe

11

The Journey

• CVC4’s old proof module struggled with many of those challenges

• For two years, we reimplemented its proof module from scratch

• Producing proofs should not significantly change the behavior of the solver

• Incorporate (almost) all relevant optimizations

• Coarse-grained steps for non-supported inferences

• Modular infrastructure allowing fine-grained error localization

• Independent proof components, combined in a trusted manner

• Every rule associated with an internal proof checker

• Custom eager/lazy generation of proofs

• Proof reconstruction (elaboration) via internal post-processing

• Support internal proof format and conversions to different proof formats

• lfsc, Lean, Alethe

11

The Journey

• CVC4’s old proof module struggled with many of those challenges

• For two years, we reimplemented its proof module from scratch

• Producing proofs should not significantly change the behavior of the solver

• Incorporate (almost) all relevant optimizations

• Coarse-grained steps for non-supported inferences

• Modular infrastructure allowing fine-grained error localization

• Independent proof components, combined in a trusted manner

• Every rule associated with an internal proof checker

• Custom eager/lazy generation of proofs

• Proof reconstruction (elaboration) via internal post-processing

• Support internal proof format and conversions to different proof formats

• lfsc, Lean, Alethe

11

The Journey

• CVC4’s old proof module struggled with many of those challenges

• For two years, we reimplemented its proof module from scratch

• Producing proofs should not significantly change the behavior of the solver

• Incorporate (almost) all relevant optimizations

• Coarse-grained steps for non-supported inferences

• Modular infrastructure allowing fine-grained error localization

• Independent proof components, combined in a trusted manner

• Every rule associated with an internal proof checker

• Custom eager/lazy generation of proofs

• Proof reconstruction (elaboration) via internal post-processing

• Support internal proof format and conversions to different proof formats

• lfsc, Lean, Alethe

11

Proof module architecture for CDCL(T)

Pre-processorφ

φ

Clausifier SAT Solver Post-processor
Cp

1 . . . Cp
m P : C⃗ → ⊥

P : ψ1 → C1 . . . P : ψm → Cm

Theory Combination

T1

T2

L1 P : L1

L2 P : L2

. . . Tk
Lk P : Lk

SMT Proof Post-processor

P : φ → ⊥⊥

sat

P : φ → ϕ1 . . . P : φ → ϕn

Propositional Engine

Theory Engine
SMT Solver

Asserted Literals
L

P : L

ϕ⃗ P : ϕ⃗ → ⊥

•

12

Proof module architecture for CDCL(T)

Pre-processorφ

φ

Clausifier SAT Solver Post-processor
Cp

1 . . . Cp
m P : C⃗ → ⊥

P : ψ1 → C1 . . . P : ψm → Cm

Theory Combination

T1

T2

L1 P : L1

L2 P : L2

. . . Tk
Lk P : Lk

SMT Proof Post-processor

P : φ → ⊥⊥

sat

P : φ → ϕ1 . . . P : φ → ϕn

Propositional Engine

Theory Engine
SMT Solver

Asserted Literals
L

P : L

ϕ⃗ P : ϕ⃗ → ⊥

•

12

Proof module architecture for CDCL(T)

Pre-processorφ

φ

Clausifier SAT Solver Post-processor
Cp

1 . . . Cp
m P : C⃗ → ⊥

P : ψ1 → C1 . . . P : ψm → Cm

Theory Combination

T1

T2

L1 P : L1

L2 P : L2

. . . Tk
Lk P : Lk

SMT Proof Post-processor

P : φ → ⊥⊥

sat

P : φ → ϕ1 . . . P : φ → ϕn

Propositional Engine

Theory Engine
SMT Solver

Asserted Literals
L

P : L

ϕ⃗ P : ϕ⃗ → ⊥

•

12

Proof module architecture for CDCL(T)

Pre-processorφ

φ

Clausifier SAT Solver Post-processor
Cp

1 . . . Cp
m P : C⃗ → ⊥

P : ψ1 → C1 . . . P : ψm → Cm

Theory Combination

T1

T2

L1 P : L1

L2 P : L2

. . . Tk
Lk P : Lk

SMT Proof Post-processor

P : φ → ⊥⊥

sat

P : φ → ϕ1 . . . P : φ → ϕn

Propositional Engine

Theory Engine
SMT Solver

Asserted Literals
L

P : L

ϕ⃗ P : ϕ⃗ → ⊥

• Preprocessor simplifies formula globally:

x ≃ t ∧ F [x] 7→ F [t] F [(ite P t1 t2)] 7→ F [t′] ∧ P → t′ ≃ t1 ∧ ¬P → t′ ≃ t2

12

Proof module architecture for CDCL(T)

Pre-processorφ

φ

Clausifier SAT Solver Post-processor
Cp

1 . . . Cp
m P : C⃗ → ⊥

P : ψ1 → C1 . . . P : ψm → Cm

Theory Combination

T1

T2

L1 P : L1

L2 P : L2

. . . Tk
Lk P : Lk

SMT Proof Post-processor

P : φ → ⊥⊥

sat

P : φ → ϕ1 . . . P : φ → ϕn

Propositional Engine

Theory Engine
SMT Solver

Asserted Literals
L

P : L

ϕ⃗ P : ϕ⃗ → ⊥

• Preprocessor simplifies formula globally:

x ≃ t ∧ F [x] 7→ F [t] F [(ite P t1 t2)] 7→ F [t′] ∧ P → t′ ≃ t1 ∧ ¬P → t′ ≃ t2

12

Proof module architecture for CDCL(T)

Pre-processorφ

φ

Clausifier SAT Solver Post-processor
Cp

1 . . . Cp
m P : C⃗ → ⊥

P : ψ1 → C1 . . . P : ψm → Cm

Theory Combination

T1

T2

L1 P : L1

L2 P : L2

. . . Tk
Lk P : Lk

SMT Proof Post-processor

P : φ → ⊥⊥

sat

P : φ → ϕ1 . . . P : φ → ϕn

Propositional Engine

Theory Engine
SMT Solver

Asserted Literals
L

P : L

ϕ⃗ P : ϕ⃗ → ⊥

• Clausifier converts to Conjunctive Normal Form (CNF)

SAT solver asserts literals that must hold based on Boolean abstraction

12

Proof module architecture for CDCL(T)

Pre-processorφ

φ

Clausifier SAT Solver Post-processor
Cp

1 . . . Cp
m P : C⃗ → ⊥

P : ψ1 → C1 . . . P : ψm → Cm

Theory Combination

T1

T2

L1 P : L1

L2 P : L2

. . . Tk
Lk P : Lk

SMT Proof Post-processor

P : φ → ⊥⊥

sat

P : φ → ϕ1 . . . P : φ → ϕn

Propositional Engine

Theory Engine
SMT Solver

Asserted Literals
L

P : L

ϕ⃗ P : ϕ⃗ → ⊥

• Theory solvers check consistency in the theory

12

Proof module architecture for CDCL(T)

Pre-processorφ

φ

Clausifier SAT Solver Post-processor
Cp

1 . . . Cp
m P : C⃗ → ⊥

P : ψ1 → C1 . . . P : ψm → Cm

Theory Combination

T1

T2

L1 P : L1

L2 P : L2

. . . Tk
Lk P : Lk

SMT Proof Post-processor

P : φ → ⊥⊥

sat

P : φ → ϕ1 . . . P : φ → ϕn

Propositional Engine

Theory Engine
SMT Solver

Asserted Literals
L

P : L

ϕ⃗ P : ϕ⃗ → ⊥

• Theory solvers check consistency in the theory

12

Proof module architecture for CDCL(T)

Pre-processorφ

φ

Clausifier SAT Solver Post-processor
Cp

1 . . . Cp
m P : C⃗ → ⊥

P : ψ1 → C1 . . . P : ψm → Cm

Theory Combination

T1

T2

L1 P : L1

L2 P : L2

. . . Tk
Lk P : Lk

SMT Proof Post-processor

P : φ → ⊥⊥

sat

P : φ → ϕ1 . . . P : φ → ϕn

Propositional Engine

Theory Engine
SMT Solver

Asserted Literals
L

P : L

ϕ⃗ P : ϕ⃗ → ⊥

• Theory solvers check consistency in the theory

12

Proof module architecture for CDCL(T)

Pre-processorφ

φ

Clausifier SAT Solver Post-processor
Cp

1 . . . Cp
m P : C⃗ → ⊥

P : ψ1 → C1 . . . P : ψm → Cm

Theory Combination

T1

T2

L1 P : L1

L2 P : L2

. . . Tk
Lk P : Lk

SMT Proof Post-processor

P : φ → ⊥⊥

sat

P : φ → ϕ1 . . . P : φ → ϕn

Propositional Engine

Theory Engine
SMT Solver

Asserted Literals
L

P : L

ϕ⃗ P : ϕ⃗ → ⊥

• Theory solvers check consistency in the theory

12

Main components: Internal proof calculus

• Rules for equality reasoning (congruence closure)

• Rules for rewriting, substitution

• Coarse-grained rules for capturing multiple core utilities

• Rules for witness forms

• Enable introduction and correct handling of new symbols

• Rules for scoped reasoning

• Enable local reasoning, via assumptions and ⇒-introduction

• Theory-specific rules

• Boolean (clausification, resolution, ...)

• Arithmetic (linear, non-linear, integer, rationals, transcendentals)

• Arrays, Datatypes, Bit-vectors, Quantifiers, ...

Documentation: https://cvc5.github.io/docs/latest/proofs/proof_rules.html

13

https://cvc5.github.io/docs/latest/proofs/proof_rules.html

Main components: Internal proof calculus

• Rules for equality reasoning (congruence closure)

• Rules for rewriting, substitution

• Coarse-grained rules for capturing multiple core utilities

• Rules for witness forms

• Enable introduction and correct handling of new symbols

• Rules for scoped reasoning

• Enable local reasoning, via assumptions and ⇒-introduction

• Theory-specific rules

• Boolean (clausification, resolution, ...)

• Arithmetic (linear, non-linear, integer, rationals, transcendentals)

• Arrays, Datatypes, Bit-vectors, Quantifiers, ...

Documentation: https://cvc5.github.io/docs/latest/proofs/proof_rules.html

13

https://cvc5.github.io/docs/latest/proofs/proof_rules.html

Main components: Library of proof generators

• Encapsulate common patterns for building proofs

• Solving components store information during solving

• Derived facts are distributed with associated proof generators

• When proof generator is requested for fact φ, its internal information is used to produce the proof

P : φ.

14

Proof module architecture

Pre-processorφ

φ

Clausifier SAT Solver Post-processor
Cp

1 . . . Cp
m P : C⃗ → ⊥

P : ψ1 → C1 . . . P : ψm → Cm

Theory Combination

T1

T2

L1 P : L1

L2 P : L2

. . . Tk
Lk P : Lk

SMT Proof Post-processor

P : φ → ⊥⊥

sat

P : φ → ϕ1 . . . P : φ → ϕn

Propositional Engine

Theory Engine
SMT Solver

Asserted Literals
L

P : L

ϕ⃗ P : ϕ⃗ → ⊥

• Actually, proof generators are transmitted between components

• Only at the post-processors are proofs requested (and fully computed)
15

Proof generation for substitution and rewriting

• Substitution and rewriting inferences recorded without further details

• No need to instrument utilities to track how terms are converted

• Only macro steps and used rewrites rules are stored in generators

a ≃ 0 b ≃ 1
SR

(a > b ∧ F) ≃ ⊥

a ≃ 0 b ≃ 1
SUBS

(a > b ∧ F) ≃ (0 > 1 ∧ F)
RW

(0 > 1 ∧ F) ≃ ⊥
(a > b ∧ F) ≃ ⊥

arith rw
0 > 1 ≃ ⊥

refl
F ≃ F

cong

(0 > 1 ∧ F) ≃ (⊥ ∧ F)
bool rw

(⊥ ∧ F) ≃ ⊥
trans

(0 > 1 ∧ F) ≃ ⊥

• Heavily used for strings, preprocessing, bitblasting, and so on.

16

Proof generation for substitution and rewriting

• Substitution and rewriting inferences recorded without further details

• No need to instrument utilities to track how terms are converted

• Only macro steps and used rewrites rules are stored in generators

a ≃ 0 b ≃ 1
SR

(a > b ∧ F) ≃ ⊥
a ≃ 0 b ≃ 1

SUBS
(a > b ∧ F) ≃ (0 > 1 ∧ F)

RW
(0 > 1 ∧ F) ≃ ⊥

(a > b ∧ F) ≃ ⊥

arith rw
0 > 1 ≃ ⊥

refl
F ≃ F

cong

(0 > 1 ∧ F) ≃ (⊥ ∧ F)
bool rw

(⊥ ∧ F) ≃ ⊥
trans

(0 > 1 ∧ F) ≃ ⊥

• Heavily used for strings, preprocessing, bitblasting, and so on.

16

Proof generation for substitution and rewriting

• Substitution and rewriting inferences recorded without further details

• No need to instrument utilities to track how terms are converted

• Only macro steps and used rewrites rules are stored in generators

a ≃ 0 b ≃ 1
SR

(a > b ∧ F) ≃ ⊥
a ≃ 0 b ≃ 1

SUBS
(a > b ∧ F) ≃ (0 > 1 ∧ F)

RW
(0 > 1 ∧ F) ≃ ⊥

(a > b ∧ F) ≃ ⊥

arith rw
0 > 1 ≃ ⊥

refl
F ≃ F

cong

(0 > 1 ∧ F) ≃ (⊥ ∧ F)
bool rw

(⊥ ∧ F) ≃ ⊥
trans

(0 > 1 ∧ F) ≃ ⊥

• Heavily used for strings, preprocessing, bitblasting, and so on.

16

Proof generation for substitution and rewriting

• Substitution and rewriting inferences recorded without further details

• No need to instrument utilities to track how terms are converted

• Only macro steps and used rewrites rules are stored in generators

a ≃ 0 b ≃ 1
SR

(a > b ∧ F) ≃ ⊥
a ≃ 0 b ≃ 1

SUBS
(a > b ∧ F) ≃ (0 > 1 ∧ F)

RW
(0 > 1 ∧ F) ≃ ⊥

(a > b ∧ F) ≃ ⊥

arith rw
0 > 1 ≃ ⊥

refl
F ≃ F

cong

(0 > 1 ∧ F) ≃ (⊥ ∧ F)
bool rw

(⊥ ∧ F) ≃ ⊥
trans

(0 > 1 ∧ F) ≃ ⊥

• Heavily used for strings, preprocessing, bitblasting, and so on.

16

Evaluation: proof production cost

• Techniques (currently) incompatible with proofs (o)

• Variable and clause elimination (SAT solver), EUF symmetry breaking, off-the-shelf SAT solvers for BV

bitblasted constraints

• Simplification under global assumptions (s)

• Producing proofs (p)

• Reconstructing fine-grained steps from coarse ones (r)

• Benchmarks

• 123k non-BVs benchmarks

• 39k BVs benchmarks

17

Evaluation: non-BVs

100000 105000 110000 115000 120000

solved instances

100

101

102

ru
nt

im
e

[s
]

cvc+os

cvc+s

cvc

cvc+pr

cvc+spr

cvc+sp

• s is fundamental for performance

• p and r significant but not critical overhead

• cvc+sp is in total 1.7× slower than cvc+s ▶ cvc+spr is in total 1.8× slower than cvc+s 18

Evaluation: BVs

20000 22500 25000 27500 30000 32500 35000 37500

solved instances

100

101

102

ru
nt

im
e

[s
]

cvc+os (BV)

cvc+s (BV)

cvc (BV)

cvc+pr (BV)

cvc+spr (BV)

cvc+sp (BV)

• o is critical

• p and r significant but not critical overhead

• cvc+sp is in total 2.6× slower than cvc+s ▶ cvc+spr is in total 3.9× slower than cvc+s 19

Evaluation: Proof Coverage

Perfect proofs are those without coarse-grained steps.

• 92% of perfect proofs in BVs

• 80% in non-BVs

• Culprits are mostly yet-to-be-supported theory preprocessing passes

• Also all non-linear arithmetic inferences from cylindric algebraic coverings

• 100% in QF S, 80% in QF SLIA

20

The Challenge with Rewrites

• Modern SMT solvers implement hundreds of rewriting rules for state-of-the-art performance

• String solver in cvc5: Over 200 rules in 3,000 lines of C++ code

• Example:

substr("",m, n)⇝ ""

• Many proof applications require detailed proofs

• Easier proof checking, better integration with interactive theorem provers

• Required: Individual proof rules for rewrite rules

• Traditional approach: Instrumenting code

• Difficult and tedious: Define proof rule and instrument code for every rewrite

21

The Challenge with Rewrites

• Modern SMT solvers implement hundreds of rewriting rules for state-of-the-art performance

• String solver in cvc5: Over 200 rules in 3,000 lines of C++ code

• Example:

substr("",m, n)⇝ ""

• Many proof applications require detailed proofs

• Easier proof checking, better integration with interactive theorem provers

• Required: Individual proof rules for rewrite rules

• Traditional approach: Instrumenting code

• Difficult and tedious: Define proof rule and instrument code for every rewrite

21

The Challenge with Rewrites

• Modern SMT solvers implement hundreds of rewriting rules for state-of-the-art performance

• String solver in cvc5: Over 200 rules in 3,000 lines of C++ code

• Example:

substr("",m, n)⇝ ""

• Many proof applications require detailed proofs

• Easier proof checking, better integration with interactive theorem provers

• Required: Individual proof rules for rewrite rules

• Traditional approach: Instrumenting code

• Difficult and tedious: Define proof rule and instrument code for every rewrite

21

Proofs for Rewrites: Our Approach

Proof Module

Theory Solver

Theory Rewriter

. . .

Theory Solver

Theory Rewriter

Rewriter

Rewrite Proof

Reconstructor

Rewrite Rule

Database

t↓t

DSL Compiler

Rules

File
. . . Rules

File

• Treat rewriter as black box and reconstruct proofs for rewrites externally

• A domain-specific language (DSL), Rare, to specify a database of rewrite rules

• A compiler for Rare that generates the C++ code that populates the rewrite rule database

• A general reconstruction algorithm, applied as a post-processor 22

Demo: Detailed Rewrite Proofs

Rare: Design Goals

• Succinct: Writing rewrite rules should be simple and concise.

• Expressive: Support for the majority of the rewrite rules in a state-of-the-art solver

• Accessible: Easy to parse and understand

23

Rare: Basic Rules

(define-rule substr-empty ((m Int) (n Int))

(str.substr "" m n) "")

24

Rare: Matching

(define-rule eq-refl ((t ?)) (= t t) true)

25

Rare: Lists

(define-rule str-concat-flatten (

(xs String :list) (s String)

(ys String :list) (zs String :list))

(str.++ xs (str.++ s ys) zs) ; match

(str.++ xs s ys zs)) ; target

26

Rare: Conditional Rules

(define-cond-rule concat-clash (

(s1 String) (s2 String :list)

(t1 String) (t2 String :list))

(and (= (str.len s1) (str.len t1)) ; precondition

(not (= s1 t1)))

(= (str .++ s1 s2) (str .++ t1 t2)) ; match

false) ; target

27

Rare: Fixed-Point Rules

(define-rule* str-len-concat-rec (

(s1 String) (s2 String)

(rest String :list))

(str.len (str.++ s1 s2 rest)) ; match

(str.len (str.++ s2 rest)) ; target

(+ (str.len s1) _)) ; context

28

Rare: Evaluation

25000 25200 25400 25600 25800 26000 26200 26400 26600

Solved Instances

0

100

200

300

400

500

600

700

800

900

R
un

ti
m

e
[s

]

cvc5

cvc5-c

cvc5-f

• Rewrites reconstructed: 95% for problems from the industrial set and of 87% for SMT-LIB

• Fully fine-grained: 20% of the proofs for industrial benchmarks, 23% of all proofs for SMT-LIB

benchmarks with rewrite steps (6,120 out of 26,611)

29

Rare: Evaluation

25000 25200 25400 25600 25800 26000 26200 26400 26600

Solved Instances

0

100

200

300

400

500

600

700

800

900

R
un

ti
m

e
[s

]

cvc5

cvc5-c

cvc5-f

• Rewrites reconstructed: 95% for problems from the industrial set and of 87% for SMT-LIB

• Fully fine-grained: 20% of the proofs for industrial benchmarks, 23% of all proofs for SMT-LIB

benchmarks with rewrite steps (6,120 out of 26,611)

29

Current/Future Work

• Detailed proofs for remaining theories (e.g., non-linear arithmetic)

• Integration of DRAT proofs for propositional reasoning

• Integration with interactive theorem provers: Lean, Isabelle/HOL, Coq

• Proof components

• Producing and checking fully detailed can be costly

• Idea: Produce proofs that can be expanded on-demand

• More complete rules for rewriting

• Standardization of a proof format

• Proof exhibition track at SMT-COMP 2022

30

Anecdotes

• Internal proof checker is highly valuable for development

• Error localization for proofs is important

• Formalization of proof rules uncovers existing issues

• Performance issues

• In a few cases, proof checker indicated it could prove something stronger

• Soundness issues

• Cannot write proper proof checker if the reasoning of the solver is wrong

• Proofs are also valuable for debugging

• Soundness bug reported, proofs used to easily isolate the incorrect rewrite

• Combination of approaches for proof generation

31

Conclusion

• Proofs are integral for the trustworthiness SMT solvers (and have other applications)

• Fine-grained proofs are now available for most of cvc5’s reasoning

• Combination of instrumentation and reconstruction

• Strings and simplification under global assumptions were special milestones

• Detailed proofs for rewriting coming soon

• Multiple proof formats are supported

• Integration into multiple proof checkers are ongoing

• Formalization of new calculi in Lean, LFSC, Isabelle/HOL

• DOT format and web-based proof visualizer

More information: https://cvc5.github.io/

SMT Proof Standardization Update today at 16:00

32

https://cvc5.github.io/

Flexible Proof Production in an Industrial-Strength SMT Solver

Haniel Barbosa,1 Andrew Reynolds,2 Gereon Kremer,3 Hanna Lachnitt,3 Aina Niemetz,3 Andres Nötzli,3 Alex Ozdemir,3

Mathias Preiner,3 Arjun Viswanathan,2 Scott Viteri,3 Yoni Zohar,4 Cesare Tinelli,2 Clark Barrett3

Special thanks: Vińıcius Braga1

1 Universidade Federal de Minas Gerais, 2 The University of Iowa, 3 Stanford University, 4 Bar-Ilan University

How some proofs look like

A ∨ ℓ B ∨ ℓ
A ∨B

¬(a ≃ b) ∨ f(a) ≃ f(b)

¬(y > 1) ∨ ¬(x < 1) ∨ y > x

φ1 ∧ · · · ∧ φn
φi ¬(φ1 ∧ · · · ∧ φn) ∨ φi

33

A particular challenge has been String solving

• Preprocessing

• Clausification

• SAT solving

• UF theory solver

• Linear Arithmetic solver

• Theory combination

• Quantifier instantiation

• Rewriting

• Including complex string methods [RNBT19]

• Strings theory solver

• Core calculus [LRT+14]

• Extended function reductions [RWB+17]

• Regular expression unfolding

34

References i

References

[BBFF20] Haniel Barbosa, Jasmin Christian Blanchette, Mathias Fleury, et al. “Scalable Fine-Grained Proofs for Formula Processing”.

In: Journal of Automated Reasoning 64.3 (2020), pp. 485–510.

[BBP13] Jasmin Christian Blanchette, Sascha Böhme, and Lawrence C. Paulson. “Extending Sledgehammer with SMT Solvers”. In:

Journal of Automated Reasoning 51.1 (2013), pp. 109–128.

[BD18] Lilian Burdy and David Déharbe. “Teaching an Old Dog New Tricks - The Drudges of the Interactive Prover in Atelier B”.

In:

Abstract State Machines, Alloy, B, TLA, VDM, and Z - 6th International Conference, ABZ 2018, Southampton, UK, June 5-8, 2018, Proceedings.

Ed. by Michael J. Butler, Alexander Raschke, Thai Son Hoang, et al. Vol. 10817. Lecture Notes in Computer Science.

Springer, 2018, pp. 415–419.

[BODF09] Thomas Bouton, Diego Caminha B. de Oliveira, David Déharbe, et al. “veriT: An Open, Trustable and Efficient

SMT-Solver”. In: Proc. Conference on Automated Deduction (CADE). Ed. by Renate A. Schmidt. Vol. 5663. Lecture Notes

in Computer Science. Springer, 2009, pp. 151–156.

References ii

[EMT+17] Burak Ekici, Alain Mebsout, Cesare Tinelli, et al. “SMTCoq: A Plug-In for Integrating SMT Solvers into Coq”. In:

Computer Aided Verification (CAV). Ed. by Rupak Majumdar and Viktor Kuncak. Vol. 10427. Lecture Notes in Computer

Science. Springer, 2017, pp. 126–133.

[FBL18] Mathias Fleury, Jasmin Christian Blanchette, and Peter Lammich. “A verified SAT solver with watched literals using

imperative HOL”. In:

Proceedings of the 7th ACM SIGPLAN International Conference on Certified Programs and Proofs, CPP 2018, Los Angeles, CA, USA, January 8-9, 2018.

Ed. by June Andronick and Amy P. Felty. ACM, 2018, pp. 158–171.

[Fle19] Mathias Fleury. “Optimizing a Verified SAT Solver”. In:

NASA Formal Methods - 11th International Symposium, NFM 2019, Houston, TX, USA, May 7-9, 2019, Proceedings.

Ed. by Julia M. Badger and Kristin Yvonne Rozier. Vol. 11460. Lecture Notes in Computer Science. Springer, 2019,

pp. 148–165.

[HBR+15] Liana Hadarean, Clark W. Barrett, Andrew Reynolds, et al. “Fine Grained SMT Proofs for the Theory of Fixed-Width

Bit-Vectors”. In: Logic for Programming, Artificial Intelligence, and Reasoning (LPAR). Ed. by Martin Davis,

Ansgar Fehnker, Annabelle McIver, et al. Vol. 9450. Lecture Notes in Computer Science. Springer, 2015, pp. 340–355.

[KBT+16] Guy Katz, Clark W. Barrett, Cesare Tinelli, et al. “Lazy proofs for DPLL(T)-based SMT solvers”. In:

Formal Methods In Computer-Aided Design (FMCAD). Ed. by Ruzica Piskac and Muralidhar Talupur. IEEE, 2016,

pp. 93–100.

References iii

[KV13] Laura Kovács and Andrei Voronkov. “First-Order Theorem Proving and Vampire”. English. In:

Computer Aided Verification (CAV). Ed. by Natasha Sharygina and Helmut Veith. Vol. 8044. Lecture Notes in Computer

Science. Springer Berlin Heidelberg, 2013, pp. 1–35.

[LRT+14] Tianyi Liang, Andrew Reynolds, Cesare Tinelli, et al. “A DPLL(T) Theory Solver for a Theory of Strings and Regular

Expressions”. In: Computer Aided Verification (CAV). Ed. by Armin Biere and Roderick Bloem. Vol. 8559. Lecture Notes in

Computer Science. Springer, 2014, pp. 646–662.

[MB08] Leonardo Mendonça de Moura and Nikolaj Bjørner. “Proofs and Refutations, and Z3”. In:

Logic for Programming, Artificial Intelligence, and Reasoning (LPAR) Workshops. Ed. by Piotr Rudnicki, Geoff Sutcliffe,

Boris Konev, et al. Vol. 418. CEUR Workshop Proceedings. CEUR-WS.org, 2008.

[Mos08] Micha l Moskal. “Rocket-Fast Proof Checking for SMT Solvers”. In:

Tools and Algorithms for Construction and Analysis of Systems (TACAS). Ed. by C. R. Ramakrishnan and Jakob Rehof.

Berlin, Heidelberg: Springer Berlin Heidelberg, 2008, pp. 486–500.

[RNBT19] Andrew Reynolds, Andres Nötzli, Clark W. Barrett, et al. “High-Level Abstractions for Simplifying Extended String

Constraints in SMT”. In: Computer Aided Verification (CAV), Part II. Ed. by Isil Dillig and Serdar Tasiran. Vol. 11562.

Lecture Notes in Computer Science. Springer, 2019, pp. 23–42.

[RWB+17] Andrew Reynolds, Maverick Woo, Clark Barrett, et al. “Scaling Up DPLL(T) String Solvers Using Context-Dependent

Simplification”. In: Computer Aided Verification (CAV). Ed. by Rupak Majumdar and Viktor Kuncak. Vol. 10427. Lecture

Notes in Computer Science. Springer, 2017, pp. 453–474.

References iv

[Sch13] Stephan Schulz. “System Description: E 1.8”. English. In:

Logic for Programming, Artificial Intelligence, and Reasoning (LPAR). Ed. by Ken McMillan, Aart Middeldorp, and

Andrei Voronkov. Vol. 8312. Lecture Notes in Computer Science. Springer Berlin Heidelberg, 2013, pp. 735–743.

[SFD21] Hans-Jörg Schurr, Mathias Fleury, and Martin Desharnais. “Reliable Reconstruction of Fine-grained Proofs in a Proof

Assistant”. In: Proc. Conference on Automated Deduction (CADE). Ed. by André Platzer and Geoff Sutcliffe. Vol. 12699.

Lecture Notes in Computer Science. Springer, 2021, pp. 450–467.

[SOR+13] Aaron Stump, Duckki Oe, Andrew Reynolds, et al. “SMT proof checking using a logical framework”. In:

Formal Methods in System Design 42.1 (2013), pp. 91–118.

[SZS04] Geoff Sutcliffe, Jürgen Zimmer, and Stephan Schulz. “TSTP Data-Exchange Formats for Automated Theorem Proving

Tools”. In: Distributed Constraint Problem Solving and Reasoning in Multi-Agent Systems. Ed. by Weixiong Zhang and

Volker Sorge. Vol. 112. Frontiers in Artificial Intelligence and Applications. IOS Press, 2004, pp. 201–215.

[WDF+09] Christoph Weidenbach, Dilyana Dimova, Arnaud Fietzke, et al. “SPASS Version 3.5”. English. In:

Proc. Conference on Automated Deduction (CADE). Ed. by RenateA. Schmidt. Vol. 5663. Lecture Notes in Computer

Science. Springer Berlin Heidelberg, 2009, pp. 140–145.

	Demo: A Simple Proof
	Demo: Detailed Rewrite Proofs
	References

