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Bugs in SMT Solvers

• State-of-the-art solvers are large projects:

• Bitwuzla: 90k LoC (C/C++)

• cvc5: 300k LoC (C++)

• z3: 500k LoC (C++)

• How do developers try to avoid bugs?

• Code reviews

• Testing on benchmark sets

• Random input testing

• But bugs remain:

• Every year SMT-COMP has disagreements between solvers

• Fuzzing tools often find bugs in solvers
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SMT Recap

// Input

Many-sorted, first-order logic formula:

String constraint︷ ︸︸ ︷
contains(x, "FLoC")

Boolean connective︷︸︸︷
∧

Integer constraint︷ ︸︸ ︷
|x| ≥ 5

▶ Does there exist a string x s.t. x contains "FLoC" and is at least five characters long?

// Output

• Satisfiable: There are values for which the formula evaluates to true

• Unsatisfiable: No values exist that make the formula true

// Examples of Theories

• Integer/real arithmetic: 5 + x ≥ y

• Bit-vectors: bvule(x, 0xFF)

• Strings: substr(x, 0, 3) = "foo"
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Can We Just Certify the Solvers?

• Large, complex code bases are too costly to certify

• A (simpler) certified system can be too slow [FBL18; Fle19]

• Certifying/qualifying a system freezes it, potentially blocking improvements

• Working around adding new features slow and costly [BD18]
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Alternative: Checking Outputs

For satisfiable inputs: Evaluate formula on values of model generated by solver

contains(x, "FLoC") ∧ |x| ≥ 5

Model: M = {x 7→ "FLoC-2022"}

What about unsatisfiable inputs?
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Agenda

• Uses of proofs

• Challenges in producing proofs

• Making a solver proof producing:

• Proofs through instrumentation: Primary approach in cvc5

• Proofs through reconstruction: Detailed rewrite proofs in cvc5

• Current and future work

6



Proofs: A New Hope

• Proofs are a justification of the logical reasoning the solver has performed to find a solution

• A proof can be checked independently

• Smaller trusted base: lfsc 5.5k (C++) + 2k (signatures) LoC vs. cvc5 300k LoC

• Proof checking is generally more efficiently than solving the problem

• Confidence in results is decoupled from the solver’s implementation
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Demo: A Simple Proof



Applications of SMT Proofs

• Strong correctness guarantees

• High-quality proofs can be used to facilitate automated compliance

• Integrations with other systems

• Automation in interactive theorem proving

• External proof cecking can identify bugs in proof rules

• Valuable for debugging

• Formalization of proof rules improves code base

• Uncovers existing issues

• Forces modular and clean code design

• Improves tool robustness

• A rich source of data that can be mined for various purposes (e.g., interpolation)

8



Applications of SMT Proofs: Compliance
A
gr
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Challenges for SMT proofs

• Collecting and storing proofs efficiently

Many attempts, no silver bullet

[SZS04; KBT+16; HBR+15; Mos08; MB08; Sch13; KV13; WDF+09; BODF09]

• Proofs for sophisticated preprocessing and rewriting techniques

Initial progress but many challenges remain

[BBFF20]

• Proofs for complex procedures in theory solvers (e.g., CAD, strings)

Open

• Standardizing a proof format

Open

• Scalable, trustworthy checking

Many attempts, no silver bullet

[BBP13; SOR+13; EMT+17; BBFF20; SFD21]
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The Journey

• CVC4’s old proof module struggled with many of those challenges

• For two years, we reimplemented its proof module from scratch

• Producing proofs should not significantly change the behavior of the solver

• Incorporate (almost) all relevant optimizations

• Coarse-grained steps for non-supported inferences

• Modular infrastructure allowing fine-grained error localization

• Independent proof components, combined in a trusted manner

• Every rule associated with an internal proof checker

• Custom eager/lazy generation of proofs

• Proof reconstruction (elaboration) via internal post-processing

• Support internal proof format and conversions to different proof formats

• lfsc, Lean, Alethe
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Proof module architecture for CDCL(T )

Pre-processorφ

φ

Clausifier SAT Solver Post-processor
Cp

1 . . . Cp
m P : C⃗ → ⊥

P : ψ1 → C1 . . . P : ψm → Cm

Theory Combination

T1

T2

L1 P : L1

L2 P : L2

. . . Tk
Lk P : Lk

SMT Proof Post-processor

P : φ → ⊥⊥

sat

P : φ → ϕ1 . . . P : φ → ϕn

Propositional Engine

Theory Engine
SMT Solver

Asserted Literals
L

P : L

ϕ⃗ P : ϕ⃗ → ⊥

•
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• Clausifier converts to Conjunctive Normal Form (CNF)

SAT solver asserts literals that must hold based on Boolean abstraction
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Main components: Internal proof calculus

• Rules for equality reasoning (congruence closure)

• Rules for rewriting, substitution

• Coarse-grained rules for capturing multiple core utilities

• Rules for witness forms

• Enable introduction and correct handling of new symbols

• Rules for scoped reasoning

• Enable local reasoning, via assumptions and ⇒-introduction

• Theory-specific rules

• Boolean (clausification, resolution, ...)

• Arithmetic (linear, non-linear, integer, rationals, transcendentals)

• Arrays, Datatypes, Bit-vectors, Quantifiers, ...

Documentation: https://cvc5.github.io/docs/latest/proofs/proof_rules.html
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Main components: Library of proof generators

• Encapsulate common patterns for building proofs

• Solving components store information during solving

• Derived facts are distributed with associated proof generators

• When proof generator is requested for fact φ, its internal information is used to produce the proof

P : φ.

14



Proof module architecture

Pre-processorφ

φ

Clausifier SAT Solver Post-processor
Cp

1 . . . Cp
m P : C⃗ → ⊥

P : ψ1 → C1 . . . P : ψm → Cm

Theory Combination

T1

T2

L1 P : L1

L2 P : L2

. . . Tk
Lk P : Lk

SMT Proof Post-processor

P : φ → ⊥⊥

sat

P : φ → ϕ1 . . . P : φ → ϕn

Propositional Engine

Theory Engine
SMT Solver

Asserted Literals
L

P : L

ϕ⃗ P : ϕ⃗ → ⊥

• Actually, proof generators are transmitted between components

• Only at the post-processors are proofs requested (and fully computed)
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Proof generation for substitution and rewriting

• Substitution and rewriting inferences recorded without further details

• No need to instrument utilities to track how terms are converted

• Only macro steps and used rewrites rules are stored in generators

a ≃ 0 b ≃ 1
SR

(a > b ∧ F ) ≃ ⊥

a ≃ 0 b ≃ 1
SUBS

(a > b ∧ F ) ≃ (0 > 1 ∧ F )
RW

(0 > 1 ∧ F ) ≃ ⊥
(a > b ∧ F ) ≃ ⊥

arith rw
0 > 1 ≃ ⊥

refl
F ≃ F

cong

(0 > 1 ∧ F ) ≃ (⊥ ∧ F )
bool rw

(⊥ ∧ F ) ≃ ⊥
trans

(0 > 1 ∧ F ) ≃ ⊥

• Heavily used for strings, preprocessing, bitblasting, and so on.
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Evaluation: proof production cost

• Techniques (currently) incompatible with proofs (o)

• Variable and clause elimination (SAT solver), EUF symmetry breaking, off-the-shelf SAT solvers for BV

bitblasted constraints

• Simplification under global assumptions (s)

• Producing proofs (p)

• Reconstructing fine-grained steps from coarse ones (r)

• Benchmarks

• 123k non-BVs benchmarks

• 39k BVs benchmarks

17



Evaluation: non-BVs

100000 105000 110000 115000 120000

solved instances

100
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ru
nt
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• s is fundamental for performance

• p and r significant but not critical overhead

• cvc+sp is in total 1.7× slower than cvc+s ▶ cvc+spr is in total 1.8× slower than cvc+s 18



Evaluation: BVs
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Evaluation: Proof Coverage

Perfect proofs are those without coarse-grained steps.

• 92% of perfect proofs in BVs

• 80% in non-BVs

• Culprits are mostly yet-to-be-supported theory preprocessing passes

• Also all non-linear arithmetic inferences from cylindric algebraic coverings

• 100% in QF S, 80% in QF SLIA
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The Challenge with Rewrites

• Modern SMT solvers implement hundreds of rewriting rules for state-of-the-art performance

• String solver in cvc5: Over 200 rules in 3,000 lines of C++ code

• Example:

substr("",m, n)⇝ ""

• Many proof applications require detailed proofs

• Easier proof checking, better integration with interactive theorem provers

• Required: Individual proof rules for rewrite rules

• Traditional approach: Instrumenting code

• Difficult and tedious: Define proof rule and instrument code for every rewrite

21
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• Traditional approach: Instrumenting code

• Difficult and tedious: Define proof rule and instrument code for every rewrite
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Proofs for Rewrites: Our Approach

Proof Module

Theory Solver

Theory Rewriter

. . .

Theory Solver

Theory Rewriter

Rewriter

Rewrite Proof

Reconstructor

Rewrite Rule

Database

t↓t

DSL Compiler

Rules

File
. . . Rules

File

• Treat rewriter as black box and reconstruct proofs for rewrites externally

• A domain-specific language (DSL), Rare, to specify a database of rewrite rules

• A compiler for Rare that generates the C++ code that populates the rewrite rule database

• A general reconstruction algorithm, applied as a post-processor 22



Demo: Detailed Rewrite Proofs



Rare: Design Goals

• Succinct: Writing rewrite rules should be simple and concise.

• Expressive: Support for the majority of the rewrite rules in a state-of-the-art solver

• Accessible: Easy to parse and understand
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Rare: Basic Rules

(define-rule substr-empty ((m Int) (n Int))

(str.substr "" m n) "")
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Rare: Matching

(define-rule eq-refl ((t ?)) (= t t) true)
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Rare: Lists

(define-rule str-concat-flatten (

(xs String :list) (s String)

(ys String :list) (zs String :list))

(str.++ xs (str.++ s ys) zs) ; match

(str.++ xs s ys zs)) ; target
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Rare: Conditional Rules

(define-cond-rule concat-clash (

(s1 String) (s2 String :list)

(t1 String) (t2 String :list))

(and (= (str.len s1) (str.len t1)) ; precondition

(not (= s1 t1)))

(= (str .++ s1 s2) (str .++ t1 t2)) ; match

false) ; target
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Rare: Fixed-Point Rules

(define-rule* str-len-concat-rec (

(s1 String) (s2 String)

(rest String :list))

(str.len (str.++ s1 s2 rest)) ; match

(str.len (str.++ s2 rest)) ; target

(+ (str.len s1) _)) ; context

28



Rare: Evaluation
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• Rewrites reconstructed: 95% for problems from the industrial set and of 87% for SMT-LIB

• Fully fine-grained: 20% of the proofs for industrial benchmarks, 23% of all proofs for SMT-LIB

benchmarks with rewrite steps (6,120 out of 26,611)
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Current/Future Work

• Detailed proofs for remaining theories (e.g., non-linear arithmetic)

• Integration of DRAT proofs for propositional reasoning

• Integration with interactive theorem provers: Lean, Isabelle/HOL, Coq

• Proof components

• Producing and checking fully detailed can be costly

• Idea: Produce proofs that can be expanded on-demand

• More complete rules for rewriting

• Standardization of a proof format

• Proof exhibition track at SMT-COMP 2022
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Anecdotes

• Internal proof checker is highly valuable for development

• Error localization for proofs is important

• Formalization of proof rules uncovers existing issues

• Performance issues

• In a few cases, proof checker indicated it could prove something stronger

• Soundness issues

• Cannot write proper proof checker if the reasoning of the solver is wrong

• Proofs are also valuable for debugging

• Soundness bug reported, proofs used to easily isolate the incorrect rewrite

• Combination of approaches for proof generation
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Conclusion

• Proofs are integral for the trustworthiness SMT solvers (and have other applications)

• Fine-grained proofs are now available for most of cvc5’s reasoning

• Combination of instrumentation and reconstruction

• Strings and simplification under global assumptions were special milestones

• Detailed proofs for rewriting coming soon

• Multiple proof formats are supported

• Integration into multiple proof checkers are ongoing

• Formalization of new calculi in Lean, LFSC, Isabelle/HOL

• DOT format and web-based proof visualizer

More information: https://cvc5.github.io/

SMT Proof Standardization Update today at 16:00
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How some proofs look like

A ∨ ℓ B ∨ ℓ
A ∨B

¬(a ≃ b) ∨ f(a) ≃ f(b)

¬(y > 1) ∨ ¬(x < 1) ∨ y > x

φ1 ∧ · · · ∧ φn
φi ¬(φ1 ∧ · · · ∧ φn) ∨ φi
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A particular challenge has been String solving

• Preprocessing

• Clausification

• SAT solving

• UF theory solver

• Linear Arithmetic solver

• Theory combination

• Quantifier instantiation

• Rewriting

• Including complex string methods [RNBT19]

• Strings theory solver

• Core calculus [LRT+14]

• Extended function reductions [RWB+17]

• Regular expression unfolding
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[RNBT19] Andrew Reynolds, Andres Nötzli, Clark W. Barrett, et al. “High-Level Abstractions for Simplifying Extended String

Constraints in SMT”. In: Computer Aided Verification (CAV), Part II. Ed. by Isil Dillig and Serdar Tasiran. Vol. 11562.

Lecture Notes in Computer Science. Springer, 2019, pp. 23–42.

[RWB+17] Andrew Reynolds, Maverick Woo, Clark Barrett, et al. “Scaling Up DPLL(T) String Solvers Using Context-Dependent

Simplification”. In: Computer Aided Verification (CAV). Ed. by Rupak Majumdar and Viktor Kuncak. Vol. 10427. Lecture

Notes in Computer Science. Springer, 2017, pp. 453–474.



References iv

[Sch13] Stephan Schulz. “System Description: E 1.8”. English. In:

Logic for Programming, Artificial Intelligence, and Reasoning (LPAR). Ed. by Ken McMillan, Aart Middeldorp, and

Andrei Voronkov. Vol. 8312. Lecture Notes in Computer Science. Springer Berlin Heidelberg, 2013, pp. 735–743.

[SFD21] Hans-Jörg Schurr, Mathias Fleury, and Martin Desharnais. “Reliable Reconstruction of Fine-grained Proofs in a Proof

Assistant”. In: Proc. Conference on Automated Deduction (CADE). Ed. by André Platzer and Geoff Sutcliffe. Vol. 12699.
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