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Introduction

Challenges in Automated Theorem Proving

Cooperation

I between provers/solvers

I with proof assistants

Trust

I checkable proofs

I reproducibility
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Introduction

Dedukti as a solution

Proof interoperability

I bridge between proof systems

Proof (re)checking

I from various sources
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What is Dedukti

Outline

� Introduction

� What is Dedukti

� Intrumenting provers for Dedukti proof production

� Reconstructing proofs

� Conclusion
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What is Dedukti

Dedukti

A logical framework

I a tool in which logical systems can be expressed

• logics
• calculi
• proofs
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What is Dedukti

Theoretical foundations

λΠ-calculus modulo theory

based on the Curry-Howard-De Bruijn correspondence

I λ-calculus with dependent types

enhanced with rewriting

I equate terms/formulas that are congruent
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What is Dedukti

(At least) Two implementations

Dedukti Core system
proof checker
https://github.com/Deducteam/Dedukti

lambdapi more interactive (proof assistant)
tactics, new friendlier syntax
https://github.com/Deducteam/lambdapi
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What is Dedukti

Why Dedukti?
Universal
I can embed a wide range of logics

FOL, HOL, CoC, . . .
I inputs from various tools

ATPs, HOL Light, Isabelle/HOL, Matita, Coq, . . .
I outputs to various tools

Coq, Lean, PVS, Matita, OpenTheory (see logipedia.science)

Simple
I small kernel
I can be reimplemented independently

Efficient
I can check proofs > 50GB
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What is Dedukti

Heart of Dedukti

Declaration of symbols

I with their type

symbol name : type;

Declaration of rewrite rules

rule left_hand side ↪→ right_hand side;
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What is Dedukti

Example

symbol nat : TYPE;

symbol 0 : nat;

symbol S : nat → nat;

symbol + : nat → nat → nat;

notation + infix left 10;

rule 0 + $x ↪→ $x;

rule S $y + $x ↪→ S ($y + $x);
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What is Dedukti

Proof checking?

When a rule is declared

I subject reduction is checked:
However the left-hand side can be typed,
the right-hand side can be typed with the same type
(modulo previous rewrite rules)
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What is Dedukti

Example of checking

symbol nat : TYPE;

symbol 0 : nat;

symbol S : nat → nat;

symbol + : nat → nat → nat;

notation + infix left 10;

rule 0 + $x ↪→ $x;

rule S $y + $x ↪→ S ($y + $x);

symbol P : nat → TYPE;

symbol f : Π x : nat , P x;

rule f (0 + S $x) ↪→ f (S 0 + $x);

Guillaume Burel: EuroProofNet WG2 meeting/PAAR Workshop, 2022-08-12

Proofs in Dedukti 12/46



What is Dedukti

Embedding a logic into Dedukti

Type for propositions:

symbol Prop : TYPE;

Deep embedding of connectives:

symbol ⊥ : Prop;

symbol ⇒ : Prop → Prop → Prop;

notation ⇒ infix right 10;

Π p : Prop, ((p ⇒ ⊥) ⇒ ⊥) ⇒ p
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What is Dedukti

First order

Type for term sorts:

symbol Set : TYPE;

symbol ι : Set;

Embedding Set terms into Dedukti terms:

symbol El : Set → TYPE;

Deep embedding of quantifiers:

symbol ∀ : Π a : Set , (El a → Prop) → Prop;

(∀x, p x)⇒ p c embedded as ∀ ι (λ x, p x) ⇒ p c

Guillaume Burel: EuroProofNet WG2 meeting/PAAR Workshop, 2022-08-12

Proofs in Dedukti 14/46



What is Dedukti

Proofs

Embedding Prop into Dedukti level:

symbol Prf : Prop → TYPE;

Making connectives more shallow:

rule Prf ($x ⇒ $y) ↪→ Prf $x → Prf $y;

rule Prf ⊥ ↪→ Π r, Prf r;

rule Prf (∀ $s $p) ↪→ Π x : El $s , Prf ($p x);

Prf (∀ ι (λ x, p x) ⇒ p c)

≡ Prf (∀ ι (λ x, p x)) → Prf (p c)

≡ (Πx : El ι, Prf (p x)) → Prf (p c)
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What is Dedukti

Dedukti terms as proofs
Proving (∀x, p x)⇒ p c

symbol my_theorem :

Π c : El ι ,
Π p : El ι → Prop ,

Prf (∀ ι (λ x, p x) ⇒ p c);

rule my_theorem $c $p ↪→ λ pp, pp $c;

Alternative syntax:

symbol my_theorem_alt (c : El ι ) (p : El ι → Prop) :

Prf (∀ ι (λ x, p x) ⇒ p c)

:= λ pp, pp c;
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Intrumenting provers for Dedukti proof production

Outline

� Introduction

� What is Dedukti

� Intrumenting provers for Dedukti proof production
• Zenon Modulo

� Reconstructing proofs

� Conclusion
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Intrumenting provers for Dedukti proof production

Trusting automated theorem provers

Automated theorem provers:

I quite big piece of software

I complex proof calculi

I finely tuned, optimization hacks

Trust?

I Originally, only answer “yes”/“no” (more often, “maybe”)

I More and more, produce at least proof traces (i.e. big steps)
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Intrumenting provers for Dedukti proof production

Trusting ATPs

To increase confidence:

I either build a certified proof checker for proof traces

• e.g. Coq certified proof checker for DRAT proof traces of SAT solvers

I or directly produce a proof checkable by your favorite assistant

Guillaume Burel: EuroProofNet WG2 meeting/PAAR Workshop, 2022-08-12

Proofs in Dedukti 19/46



Intrumenting provers for Dedukti proof production

Trusting ATPs

To increase confidence:

I either build a certified proof checker for proof traces

• e.g. Coq certified proof checker for DRAT proof traces of SAT solvers

I or directly produce a proof checkable by your favorite assistant

Guillaume Burel: EuroProofNet WG2 meeting/PAAR Workshop, 2022-08-12

Proofs in Dedukti 19/46



Intrumenting provers for Dedukti proof production

Instrumenting a prover to produce a proof

Problem
.p

Instrumented
ATP

e.g. iProverModulo
Proof
.dk
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Intrumenting provers for Dedukti proof production

Pros:

I Access to all needed informations

Cons:

I Needs to embed the calculus of the prover into Dedukti

I Needs to know precisely the code of the prover

I more or less easy depending on the complexity of the code/the proof calculus

I easier if a proof output was designed from the start (e.g. in Zenon)

Can only be done for a few provers
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Intrumenting provers for Dedukti proof production

Provers outputing Dedukti proofs

iProverModulo: extension of iProver to handle Deduction Modulo Theory
https://github.com/gburel/iProverModulo.git

Zenon Modulo: extension of Zenon to handle Deduction Modulo Theory and
arithmetic
https://github.com/Deducteam/zenon_modulo.git

ArchSAT: SMT solver
https://github.com/Gbury/archsat
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Intrumenting provers for Dedukti proof production

Translating proofs

First, need to carefully choose in which theory we are working

I e.g. D[FOL]

Then, two approaches:

I Directly translating proofs into Dedukti

• iProverModulo

I Embedding the proof calculus into Dedukti

• Zenon Modulo
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Intrumenting provers for Dedukti proof production Zenon Modulo

Zenon Modulo

[Delahaye, Doligez, Gilbert, Halmagrand, and Hermant 2013]

I extension of Zenon to Deduction Modulo Theory

I tableau-based

I polymorphic first-order logic with equality
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Intrumenting provers for Dedukti proof production Zenon Modulo

Tableau proofs
Proofs by contradiction
' bottom-up sequent-calculus with metavariables

P,¬P ��
¬(A⇒ B)

α¬⇒¬A,B
¬(A ∧B)

β¬∧¬A | ¬B
Example, proof by refutation of P ⇒ (P ∧ P ):

¬(P ⇒ (P ∧ P ))
α¬⇒

P
¬(P ∧ P )

β¬∧¬P ��
¬P ��
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Intrumenting provers for Dedukti proof production Zenon Modulo

Deep embedding of proof calculus
P,¬P �� :

symbol Rax p : Prf p → Prf (¬p) → Prf ⊥;
¬(A⇒ B)

α¬⇒¬A,B :

symbol R¬⇒ a b : (Prf a → Prf (¬b) → Prf ⊥) → Prf (¬(a ⇒ b)) → Prf ⊥;

¬(A ∧B)
β¬∧¬A | ¬B

:

symbol R¬∧ a b : (Prf (¬ a) → Prf ⊥) → (Prf (¬ b) → Prf ⊥) →
Prf (¬ (a ∧ b)) → Prf ⊥;
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Intrumenting provers for Dedukti proof production Zenon Modulo

Deep translation of the example

(after η-reduction to make it more readable)

opaque symbol goal : Prf c (p ⇒ (p ∧ p)) :=
R¬⇒ p (p ∧ p)

(λ π, R¬∧ p p (Rax p π) (Rax p π));
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Intrumenting provers for Dedukti proof production Zenon Modulo

Making the embedding more shallow

Defines Tableaux rules as Dedukti terms,
prove that they are derivable in FOL:

rule Rax ↪→ λ p h π, π h;

rule R¬∧ ↪→ λ p q h1 h2 h3 ,

h1 (λ h5 , h2 (λ h6, h3 (λ r π, π h5 h6)));

rule R¬⇒ ↪→ λ p q h1 h2 ,

h2 (λ h3 , h1 h3 (λ h4, h2 (λ _, h4)) q);
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Intrumenting provers for Dedukti proof production Zenon Modulo

Shallow proof from the example

assert ` goal : Prf c (p ⇒ (p ∧ p));

assert ` goal ≡
λ h2, h2 (λ h3, h2 (λ _ _ π, π h3 h3) (p ∧ p));
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Reconstructing proofs

Outline

� Introduction

� What is Dedukti

� Intrumenting provers for Dedukti proof production

� Reconstructing proofs

� Conclusion

Guillaume Burel: EuroProofNet WG2 meeting/PAAR Workshop, 2022-08-12

Proofs in Dedukti 30/46



Reconstructing proofs

Limits of instrumentation

Provers can be hard to instrument to produce exact Dedukti proofs

I large piece of software

I developers not expert in λΠ-calculus modulo theory

I non stable and quite big proof calculus
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Reconstructing proofs

Proof calculus of E

• sel(C) ⊆ C.

• If sel(C) ∩ C− = ∅, then sel(C) = ∅.

We say that a literal L is selected (with respect to a given selection function)
in a clause C if L ∈ sel(C). J

We will use two kinds of restrictions on deducing new clauses: One induced
by ordering constraints and the other by selection functions. We combine these
in the notion of eligible literals.

Definition 3.1.2 (Eligible literals)
Let C = L ∨ R be a clause, let σ be a substitution and let sel be a selection
function.

• We say σ(L) is eligible for resolution if either

– sel(C) = ∅ and σ(L) is >L-maximal in σ(C) or

– sel(C) 6= ∅ and σ(L) is >L-maximal in σ(sel(C) ∩ C−) or

– sel(C) 6= ∅ and σ(L) is >L-maximal in σ(sel(C) ∩ C+).

• σ(L) is eligible for paramodulation if L is positive, sel(C) = ∅ and σ(L) is
strictly >L-maximal in σ(C).

J

The calculus is represented in the form of inference rules. For convenience, we
distinguish two types of inference rules. For generating inference rules, written
with a single line separating preconditions and results, the result is added to
the set of all clauses. For contracting inference rules, written with a double
line, the result clauses are substituted for the clauses in the precondition. In
the following, u, v, s and t are terms, σ is a substitution and R, S and T are
(partial) clauses. p is a position in a term and λ is the empty or top-position.
D ⊆ F is a set of unused constant predicate symbols. Different clauses are
assumed to not share any common variables.

Definition 3.1.3 (The inference system SP)
Let > be a total simplification ordering (extended to orderings >L and >C

on literals and clauses), let sel be a selection function, and let D be a set of
fresh propositional constants. The inference system SP consists of the following
inference rules:

• Equality Resolution:

(ER)
u 6'v ∨R
σ(R)

if σ = mgu(u, v) and σ(u 6'
v) is eligible for resolution.

8

• Superposition into negative literals:

(SN)
s' t ∨ S u 6'v ∨R

σ(u[p← t] 6'v ∨ S ∨R)

if σ = mgu(u|p, s), σ(s) 6<
σ(t), σ(u) 6< σ(v), σ(s' t)
is eligible for paramodula-
tion, σ(u 6'v) is eligible for
resolution, and u|p /∈ V .

• Superposition into positive literals:

(SP)
s' t ∨ S u'v ∨R

σ(u[p← t]'v ∨ S ∨R)

if σ = mgu(u|p, s), σ(s) 6<
σ(t), σ(u) 6< σ(v), σ(s' t)
is eligible for paramodula-
tion, σ(u'v) is eligible for
resolution, and u|p /∈ V .

• Simultaneous superposition into negative literals

(SSN)
s' t ∨ S u 6'v ∨R

σ(S ∨ (u 6'v ∨R)[u|p ← t])

if σ = mgu(u|p, s), σ(s) 6<
σ(t), σ(u) 6< σ(v), σ(s' t)
is eligible for paramodula-
tion, σ(u 6'v) is eligible for
resolution, and u|p /∈ V .

This inference rule is an alternative to (SN) that performs better in prac-
tice.

• Simultaneous superposition into positive literals

(SSP)
s' t ∨ S u'v ∨R

σ(S ∨ (u'v ∨R)[u|p ← t])

if σ = mgu(u|p, s), σ(s) 6<
σ(t), σ(u) 6< σ(v), σ(s' t)
is eligible for paramodula-
tion, σ(u 6'v) is eligible for
resolution, and u|p /∈ V .

This inference rule is an alternative to (SP) that performs better in prac-
tice.

• Equality factoring :

(EF)
s' t ∨ u'v ∨R

σ(t 6'v ∨ u'v ∨R)

if σ = mgu(s, u), σ(t) 6>
σ(s) and σ(s' t) eligible for
paramodulation.

• Rewriting of negative literals:

(RN)
s' t u 6'v ∨R

s' t u[p← σ(t)] 6'v ∨R
if u|p = σ(s) and σ(s) > σ(t).

9

• Rewriting of positive literals2:

(RP)
s' t u'v ∨R

s' t u[p← σ(t)]'v ∨R

if u|p = σ(s), σ(s) > σ(t),
and if u' v is not eligible for
paramodulation or v > u or
p 6= λ.

• Clause subsumption:

(CS)
C σ(C ∨R)

C

where C and R are arbitrary
(partial) clauses and σ is a
substitution.

• Equality subsumption:

(ES)
s' t u[p← σ(s)]'u[p← σ(t)] ∨R

s' t

• Positive simplify-reflect3:

(PS)
s' t u[p← σ(s)] 6'u[p← σ(t)] ∨R

s' t R

• Negative simplify-reflect

(NS)
s 6' t σ(s) 6'σ(t) ∨R

s 6' t R

• Tautology deletion:

(TD)
C

if C is a tautology4

2A stronger version of (RP) is proven to maintain completeness for Unit and Horn prob-
lems and is generally believed to maintain completeness for the general case as well [Bac98].
However, the proof of completeness for the general case seems to be rather involved, as it re-
quires a very different clause ordering than the one introduced [BG94], and we are not aware
of any existing proof in the literature. The variant rule allows rewriting of maximal terms of
maximal literals under certain circumstances:

(RP’)
s' t u'v ∨R

s' t u[p← σ(t)]'v ∨R

if u|p = σ(s), σ(s) > σ(t) and if u'
v is not eligible for paramdulation or
u 6> v or p 6= λ or σ is not a variable
renaming.

This stronger rule is implemented successfully by both E and SPASS [Wei99].
3In practice, this rule is only applied if σ(s) and σ(t) are >-incomparable – in all other

cases this rule is subsumed by (RN) and the deletion of resolved literals (DR).
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• Deletion of duplicate literals:

(DD)
s' t ∨ s' t ∨R

s' t ∨R

• Deletion of resolved literals:

(DR)
s 6's ∨R

R

• Destructive equality resolution:

(DE)
x 6'y ∨R
σ(R)

if x, y ∈ V, σ = mgu(x, y)

• Contextual literal cutting :

(CLC)
σ(C ∨R ∨ s'̇t) C ∨ s'̇t
σ(C ∨R) C ∨ s'̇t

where s'̇t is the negation of
s'̇t and σ is a substitution

This rule is also known as subsumption resolution or clausal simplification.

• Condensing :

(CON)
l1 ∨ l2 ∨R
σ(l1 ∨R)

if σ(l1) = σ(l2) and σ(l1 ∨ R)
subsumes l1 ∨ l2 ∨R

• Introduce definition5

(ID)
R ∨ S

d ∨R ¬d ∨ S

if R and S do not share any
variables, d ∈ D has not been
used in a previous definition
and R does not contain any
symbol from D

• Apply definition

(AD)
σ(d ∨R) R ∨ S
σ(d ∨R) ¬d ∨ S

if σ is a variable renaming, R
and S do not share any vari-
ables, d ∈ D and R does not
contain any symbol from D

4This rule can only be implemented approximately, as the problem of recognizing tautolo-
gies is only semi-decidable in equational logic. Current versions of E try to detect tautologies
by checking if the ground-completed negative literals imply at least one of the positive literals,
as suggested in [NN93].

5This rule is always exhaustively applied to any clause, leaving n split-off clauses and one
final link clause of all negative propositions.

11
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Reconstructing proofs

Proof trace

But often, provers produce at least a proof trace:

I list of formulas that were derived to obtain the proof

I sometimes with more informations

• premises
• name of the inference rules
• theory
• . . .
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Reconstructing proofs

Example of trace: TSTP format

Output format of E, Vampire, Zipperposition, . . .

List of formulas

I each annotated by an inference tree whose leafs are other formulas

cnf(c_0_60,plain,

( join(X1,join(X2,X3)) = join(X2,join(X1,X3)) ),

inference(rw,[status(thm)],

[inference(spm,[status(thm)],[c_0_30,c_0_18]),

c_0_30])).

Independent of the proof calculus
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Reconstructing proofs

Proof reconstruction

Use the content of the proof trace to reconstruct a Dedukti proof

Idea:

I Reprove each step using a Dedukti producing tool

I Combine the proofs of the steps to get a proof of the original formula

Try to be agnostic:

I w.r.t. the prover that produces the trace

I w.r.t. the prover that reprove the steps
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Reconstructing proofs

Ekstrakto

[El Haddad 2021]

I Input: TSTP proof trace

I Output: Reconstructed Lambdapi proof

https://github.com/Deducteam/ekstrakto
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Reconstructing proofs

Ekstrakto architecture

Problem
.p

Proof trace
.s

Proof step
.p

Lambdapi proof
.lp

Problem signature
.lp

Global Lambdapi proof
.lp

Lambdapi producing ATP
e.g. Zenon modulo

EkstraktoATP
e.g. E

Proof step
.p

Lambdapi proof
.lp

Lambdapi producing ATP
e.g. Zenon modulo

Proof step
.p

Lambdapi proof
.lp

Lambdapi producing ATP
e.g. Zenon modulo
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Reconstructing proofs

Experimental evaluation

Benchmark:

I CNF problems of TPTP v7.4.0 (8118 files)

Trace producers:

I E and Vampire

Step provers:

I Zenon modulo and ArchSat
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Reconstructing proofs

Results

Percentage of Lambdapi proofs on the extracted TPTP files
Prover % E % Vampire

ZenonModulo 87% 60%
ArchSAT 92% 81%

ZenonModulo ∪ ArchSAT 95% 85%

Percentage of complete Lambdapi proofs
Prover % E TSTP % Vampire TSTP

ZenonModulo 45% 54%
ArchSAT 56% 74%

ZenonModulo ∪ ArchSAT 69% 83%
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Reconstructing proofs

Non provable steps

Problem:

I some steps are not provable
their conclusion is not a logical consequence of their premises

I OK because they preserve provability

I but Ekstrakto cannot work for them

Main instance: Skolemization

Γ, ~∀x,∃y, A[~x, y] ` B iff Γ, ~∀x,A[~x, f(~x)] ` B for a fresh f

Present in the CNF transformation used by almost all ATPs
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I OK because they preserve provability

I but Ekstrakto cannot work for them

Main instance: Skolemization

Γ, ~∀x,∃y, A[~x, y] ` B iff Γ, ~∀x,A[~x, f(~x)] ` B for a fresh f

Present in the CNF transformation used by almost all ATPs

Guillaume Burel: EuroProofNet WG2 meeting/PAAR Workshop, 2022-08-12

Proofs in Dedukti 40/46



Reconstructing proofs

Skonverto

[El Haddad 2021]

Inputs:

I an axiom and its Skolemized version

I a Lambdapi proof using the latter

Output:

I a Lambdapi proof using the non-Skolemized axiom
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Reconstructing proofs

Content

Implementation of a constructive proof of Skolem theorem by [Dowek and
Werner 2005]

I in the context of first-order natural deduction
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Reconstructing proofs

symbol axiom : Prf (∀ (λ X, ∃ (λ Y, (p X (s Y)))));

symbol goal

(ax_tran : Prf (∀ (λ X1 : El ι , ∀ (λ X2 : El ι , ∀ (λ X3 : El ι ,
(p X1 X2) ⇒ ((p X2 X3) ⇒ (p X1 X3 )))))))

(ax_step : Prf (∀ (λ X1 : El ι , (p X1 (s (f X1 ))))))

(ax_congr : Prf (∀ (λ X1 : El ι , ∀ (λ X2 : El ι ,
(p X1 X2) ⇒ (p (s X1) (s X2 ))))))

(ax_goal : Prf (¬ (∃ (λ X4 : El ι , ((p a (s (s X4 ))))))))

: Prf ⊥
:= ax_goal (∃I (λ X4 : El ι , p a (s (s X4))) (f (f a))

(ax_tran a (s (f a)) (s (s (f (f a))))

(ax_step a)

(ax_congr (f a) (s (f (f a))) (ax_step (f a)))));
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Reconstructing proofs

symbol goal

(ax_tran : Prf (∀ (λ X1 : El ι , ∀ (λ X2 : El ι , ∀ (λ X3 : El ι ,
(p X1 X2) ⇒ ((p X2 X3) ⇒ (p X1 X3 )))))))

(ax_step : Prf (∀ (λ X, ∃ (λ Y, (p X (s Y))))))

(ax_congr : Prf (∀ (λ X1 : El ι , ∀ (λ X2 : El ι ,
(p X1 X2) ⇒ (p (s X1) (s X2 ))))))

(ax_goal : Prf (¬ (∃ (λ X4 : El ι , ((p a (s (s X4 ))))))))

: Prf ⊥
:= ax_goal (λ r h, ∃E (λ z, p a (s z)) (ax_step a) r

(λ z a1, ∃E (λ z0 , p z (s z0)) (ax_step z) r

(λ z0 a2 , h z0 (ax_tran a (s z) (s (s z0)) a1

(ax_congr z (s z0) a2 )))));
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Conclusion

Outline

� Introduction

� What is Dedukti

� Intrumenting provers for Dedukti proof production

� Reconstructing proofs

� Conclusion

Guillaume Burel: EuroProofNet WG2 meeting/PAAR Workshop, 2022-08-12

Proofs in Dedukti 45/46



Conclusion

Conclusion

Dedukti as a universal back-end for proof checking and interoperability

Instrumenting a prover to produce Dedukti proofs

I good if you start your prover from scratch

Reconstructing proofs

I more adapted for existing provers

I cannot reconstruct all proofs

I also for proof assistants

• PVS, Atelier B
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