
Proofs in Dedukti

EuroProofNet WG2 meeting/PAAR Workshop

Guillaume Burel

Friday August 12th, 2022

Samovar, ENSIIE

Guillaume Burel: EuroProofNet WG2 meeting/PAAR Workshop, 2022-08-12

Proofs in Dedukti 1/46

Introduction

Challenges in Automated Theorem Proving

Cooperation

I between provers/solvers

I with proof assistants

Trust

I checkable proofs

I reproducibility

Guillaume Burel: EuroProofNet WG2 meeting/PAAR Workshop, 2022-08-12

Proofs in Dedukti 2/46

Introduction

Dedukti as a solution

Proof interoperability

I bridge between proof systems

Proof (re)checking

I from various sources

Guillaume Burel: EuroProofNet WG2 meeting/PAAR Workshop, 2022-08-12

Proofs in Dedukti 3/46

What is Dedukti

Outline

� Introduction

� What is Dedukti

� Intrumenting provers for Dedukti proof production

� Reconstructing proofs

� Conclusion

Guillaume Burel: EuroProofNet WG2 meeting/PAAR Workshop, 2022-08-12

Proofs in Dedukti 4/46

What is Dedukti

Dedukti

A logical framework

I a tool in which logical systems can be expressed

• logics
• calculi
• proofs

Guillaume Burel: EuroProofNet WG2 meeting/PAAR Workshop, 2022-08-12

Proofs in Dedukti 5/46

What is Dedukti

Theoretical foundations

λΠ-calculus modulo theory

based on the Curry-Howard-De Bruijn correspondence

I λ-calculus with dependent types

enhanced with rewriting

I equate terms/formulas that are congruent

Guillaume Burel: EuroProofNet WG2 meeting/PAAR Workshop, 2022-08-12

Proofs in Dedukti 6/46

What is Dedukti

(At least) Two implementations

Dedukti Core system
proof checker
https://github.com/Deducteam/Dedukti

lambdapi more interactive (proof assistant)
tactics, new friendlier syntax
https://github.com/Deducteam/lambdapi

Guillaume Burel: EuroProofNet WG2 meeting/PAAR Workshop, 2022-08-12

Proofs in Dedukti 7/46

https://github.com/Deducteam/Dedukti
https://github.com/Deducteam/lambdapi

What is Dedukti

Why Dedukti?
Universal
I can embed a wide range of logics

FOL, HOL, CoC, . . .
I inputs from various tools

ATPs, HOL Light, Isabelle/HOL, Matita, Coq, . . .
I outputs to various tools

Coq, Lean, PVS, Matita, OpenTheory (see logipedia.science)

Simple
I small kernel
I can be reimplemented independently

Efficient
I can check proofs > 50GB

Guillaume Burel: EuroProofNet WG2 meeting/PAAR Workshop, 2022-08-12

Proofs in Dedukti 8/46

logipedia.science

What is Dedukti

Heart of Dedukti

Declaration of symbols

I with their type

symbol name : type;

Declaration of rewrite rules

rule left_hand side ↪→ right_hand side;

Guillaume Burel: EuroProofNet WG2 meeting/PAAR Workshop, 2022-08-12

Proofs in Dedukti 9/46

What is Dedukti

Example

symbol nat : TYPE;

symbol 0 : nat;

symbol S : nat → nat;

symbol + : nat → nat → nat;

notation + infix left 10;

rule 0 + $x ↪→ $x;

rule S $y + $x ↪→ S ($y + $x);

Guillaume Burel: EuroProofNet WG2 meeting/PAAR Workshop, 2022-08-12

Proofs in Dedukti 10/46

What is Dedukti

Proof checking?

When a rule is declared

I subject reduction is checked:
However the left-hand side can be typed,
the right-hand side can be typed with the same type
(modulo previous rewrite rules)

Guillaume Burel: EuroProofNet WG2 meeting/PAAR Workshop, 2022-08-12

Proofs in Dedukti 11/46

What is Dedukti

Example of checking

symbol nat : TYPE;

symbol 0 : nat;

symbol S : nat → nat;

symbol + : nat → nat → nat;

notation + infix left 10;

rule 0 + $x ↪→ $x;

rule S $y + $x ↪→ S ($y + $x);

symbol P : nat → TYPE;

symbol f : Π x : nat , P x;

rule f (0 + S $x) ↪→ f (S 0 + $x);

Guillaume Burel: EuroProofNet WG2 meeting/PAAR Workshop, 2022-08-12

Proofs in Dedukti 12/46

What is Dedukti

Embedding a logic into Dedukti

Type for propositions:

symbol Prop : TYPE;

Deep embedding of connectives:

symbol ⊥ : Prop;

symbol ⇒ : Prop → Prop → Prop;

notation ⇒ infix right 10;

Π p : Prop, ((p ⇒ ⊥) ⇒ ⊥) ⇒ p

Guillaume Burel: EuroProofNet WG2 meeting/PAAR Workshop, 2022-08-12

Proofs in Dedukti 13/46

What is Dedukti

First order

Type for term sorts:

symbol Set : TYPE;

symbol ι : Set;

Embedding Set terms into Dedukti terms:

symbol El : Set → TYPE;

Deep embedding of quantifiers:

symbol ∀ : Π a : Set , (El a → Prop) → Prop;

(∀x, p x)⇒ p c embedded as ∀ ι (λ x, p x) ⇒ p c

Guillaume Burel: EuroProofNet WG2 meeting/PAAR Workshop, 2022-08-12

Proofs in Dedukti 14/46

What is Dedukti

Proofs

Embedding Prop into Dedukti level:

symbol Prf : Prop → TYPE;

Making connectives more shallow:

rule Prf ($x ⇒ $y) ↪→ Prf $x → Prf $y;

rule Prf ⊥ ↪→ Π r, Prf r;

rule Prf (∀ $s $p) ↪→ Π x : El $s , Prf ($p x);

Prf (∀ ι (λ x, p x) ⇒ p c)

≡ Prf (∀ ι (λ x, p x)) → Prf (p c)

≡ (Πx : El ι, Prf (p x)) → Prf (p c)

Guillaume Burel: EuroProofNet WG2 meeting/PAAR Workshop, 2022-08-12

Proofs in Dedukti 15/46

What is Dedukti

Dedukti terms as proofs
Proving (∀x, p x)⇒ p c

symbol my_theorem :

Π c : El ι ,
Π p : El ι → Prop ,

Prf (∀ ι (λ x, p x) ⇒ p c);

rule my_theorem $c $p ↪→ λ pp, pp $c;

Alternative syntax:

symbol my_theorem_alt (c : El ι) (p : El ι → Prop) :

Prf (∀ ι (λ x, p x) ⇒ p c)

:= λ pp, pp c;

Guillaume Burel: EuroProofNet WG2 meeting/PAAR Workshop, 2022-08-12

Proofs in Dedukti 16/46

Intrumenting provers for Dedukti proof production

Outline

� Introduction

� What is Dedukti

� Intrumenting provers for Dedukti proof production
• Zenon Modulo

� Reconstructing proofs

� Conclusion

Guillaume Burel: EuroProofNet WG2 meeting/PAAR Workshop, 2022-08-12

Proofs in Dedukti 17/46

Intrumenting provers for Dedukti proof production

Trusting automated theorem provers

Automated theorem provers:

I quite big piece of software

I complex proof calculi

I finely tuned, optimization hacks

Trust?

I Originally, only answer “yes”/“no” (more often, “maybe”)

I More and more, produce at least proof traces (i.e. big steps)

Guillaume Burel: EuroProofNet WG2 meeting/PAAR Workshop, 2022-08-12

Proofs in Dedukti 18/46

Intrumenting provers for Dedukti proof production

Trusting ATPs

To increase confidence:

I either build a certified proof checker for proof traces

• e.g. Coq certified proof checker for DRAT proof traces of SAT solvers

I or directly produce a proof checkable by your favorite assistant

Guillaume Burel: EuroProofNet WG2 meeting/PAAR Workshop, 2022-08-12

Proofs in Dedukti 19/46

Intrumenting provers for Dedukti proof production

Trusting ATPs

To increase confidence:

I either build a certified proof checker for proof traces

• e.g. Coq certified proof checker for DRAT proof traces of SAT solvers

I or directly produce a proof checkable by your favorite assistant

Guillaume Burel: EuroProofNet WG2 meeting/PAAR Workshop, 2022-08-12

Proofs in Dedukti 19/46

Intrumenting provers for Dedukti proof production

Instrumenting a prover to produce a proof

Problem
.p

Instrumented
ATP

e.g. iProverModulo
Proof
.dk

Guillaume Burel: EuroProofNet WG2 meeting/PAAR Workshop, 2022-08-12

Proofs in Dedukti 20/46

Intrumenting provers for Dedukti proof production

Pros:

I Access to all needed informations

Cons:

I Needs to embed the calculus of the prover into Dedukti

I Needs to know precisely the code of the prover

I more or less easy depending on the complexity of the code/the proof calculus

I easier if a proof output was designed from the start (e.g. in Zenon)

Can only be done for a few provers

Guillaume Burel: EuroProofNet WG2 meeting/PAAR Workshop, 2022-08-12

Proofs in Dedukti 21/46

Intrumenting provers for Dedukti proof production

Provers outputing Dedukti proofs

iProverModulo: extension of iProver to handle Deduction Modulo Theory
https://github.com/gburel/iProverModulo.git

Zenon Modulo: extension of Zenon to handle Deduction Modulo Theory and
arithmetic
https://github.com/Deducteam/zenon_modulo.git

ArchSAT: SMT solver
https://github.com/Gbury/archsat

Guillaume Burel: EuroProofNet WG2 meeting/PAAR Workshop, 2022-08-12

Proofs in Dedukti 22/46

https://github.com/gburel/iProverModulo.git
https://github.com/Deducteam/zenon_modulo.git
https://github.com/Gbury/archsat

Intrumenting provers for Dedukti proof production

Translating proofs

First, need to carefully choose in which theory we are working

I e.g. D[FOL]

Then, two approaches:

I Directly translating proofs into Dedukti

• iProverModulo

I Embedding the proof calculus into Dedukti

• Zenon Modulo

Guillaume Burel: EuroProofNet WG2 meeting/PAAR Workshop, 2022-08-12

Proofs in Dedukti 23/46

Intrumenting provers for Dedukti proof production Zenon Modulo

Zenon Modulo

[Delahaye, Doligez, Gilbert, Halmagrand, and Hermant 2013]

I extension of Zenon to Deduction Modulo Theory

I tableau-based

I polymorphic first-order logic with equality

Guillaume Burel: EuroProofNet WG2 meeting/PAAR Workshop, 2022-08-12

Proofs in Dedukti 24/46

Intrumenting provers for Dedukti proof production Zenon Modulo

Tableau proofs
Proofs by contradiction
' bottom-up sequent-calculus with metavariables

P,¬P ��
¬(A⇒ B)

α¬⇒¬A,B
¬(A ∧B)

β¬∧¬A | ¬B
Example, proof by refutation of P ⇒ (P ∧ P):

¬(P ⇒ (P ∧ P))
α¬⇒

P
¬(P ∧ P)

β¬∧¬P ��
¬P ��

Guillaume Burel: EuroProofNet WG2 meeting/PAAR Workshop, 2022-08-12

Proofs in Dedukti 25/46

Intrumenting provers for Dedukti proof production Zenon Modulo

Deep embedding of proof calculus
P,¬P �� :

symbol Rax p : Prf p → Prf (¬p) → Prf ⊥;
¬(A⇒ B)

α¬⇒¬A,B :

symbol R¬⇒ a b : (Prf a → Prf (¬b) → Prf ⊥) → Prf (¬(a ⇒ b)) → Prf ⊥;

¬(A ∧B)
β¬∧¬A | ¬B

:

symbol R¬∧ a b : (Prf (¬ a) → Prf ⊥) → (Prf (¬ b) → Prf ⊥) →
Prf (¬ (a ∧ b)) → Prf ⊥;

Guillaume Burel: EuroProofNet WG2 meeting/PAAR Workshop, 2022-08-12

Proofs in Dedukti 26/46

Intrumenting provers for Dedukti proof production Zenon Modulo

Deep translation of the example

(after η-reduction to make it more readable)

opaque symbol goal : Prf c (p ⇒ (p ∧ p)) :=
R¬⇒ p (p ∧ p)

(λ π, R¬∧ p p (Rax p π) (Rax p π));

Guillaume Burel: EuroProofNet WG2 meeting/PAAR Workshop, 2022-08-12

Proofs in Dedukti 27/46

Intrumenting provers for Dedukti proof production Zenon Modulo

Making the embedding more shallow

Defines Tableaux rules as Dedukti terms,
prove that they are derivable in FOL:

rule Rax ↪→ λ p h π, π h;

rule R¬∧ ↪→ λ p q h1 h2 h3 ,

h1 (λ h5 , h2 (λ h6, h3 (λ r π, π h5 h6)));

rule R¬⇒ ↪→ λ p q h1 h2 ,

h2 (λ h3 , h1 h3 (λ h4, h2 (λ _, h4)) q);

Guillaume Burel: EuroProofNet WG2 meeting/PAAR Workshop, 2022-08-12

Proofs in Dedukti 28/46

Intrumenting provers for Dedukti proof production Zenon Modulo

Shallow proof from the example

assert ` goal : Prf c (p ⇒ (p ∧ p));

assert ` goal ≡
λ h2, h2 (λ h3, h2 (λ _ _ π, π h3 h3) (p ∧ p));

Guillaume Burel: EuroProofNet WG2 meeting/PAAR Workshop, 2022-08-12

Proofs in Dedukti 29/46

Reconstructing proofs

Outline

� Introduction

� What is Dedukti

� Intrumenting provers for Dedukti proof production

� Reconstructing proofs

� Conclusion

Guillaume Burel: EuroProofNet WG2 meeting/PAAR Workshop, 2022-08-12

Proofs in Dedukti 30/46

Reconstructing proofs

Limits of instrumentation

Provers can be hard to instrument to produce exact Dedukti proofs

I large piece of software

I developers not expert in λΠ-calculus modulo theory

I non stable and quite big proof calculus

Guillaume Burel: EuroProofNet WG2 meeting/PAAR Workshop, 2022-08-12

Proofs in Dedukti 31/46

Reconstructing proofs

Proof calculus of E

• sel(C) ⊆ C.

• If sel(C) ∩ C− = ∅, then sel(C) = ∅.

We say that a literal L is selected (with respect to a given selection function)
in a clause C if L ∈ sel(C). J

We will use two kinds of restrictions on deducing new clauses: One induced
by ordering constraints and the other by selection functions. We combine these
in the notion of eligible literals.

Definition 3.1.2 (Eligible literals)
Let C = L ∨ R be a clause, let σ be a substitution and let sel be a selection
function.

• We say σ(L) is eligible for resolution if either

– sel(C) = ∅ and σ(L) is >L-maximal in σ(C) or

– sel(C) 6= ∅ and σ(L) is >L-maximal in σ(sel(C) ∩ C−) or

– sel(C) 6= ∅ and σ(L) is >L-maximal in σ(sel(C) ∩ C+).

• σ(L) is eligible for paramodulation if L is positive, sel(C) = ∅ and σ(L) is
strictly >L-maximal in σ(C).

J

The calculus is represented in the form of inference rules. For convenience, we
distinguish two types of inference rules. For generating inference rules, written
with a single line separating preconditions and results, the result is added to
the set of all clauses. For contracting inference rules, written with a double
line, the result clauses are substituted for the clauses in the precondition. In
the following, u, v, s and t are terms, σ is a substitution and R, S and T are
(partial) clauses. p is a position in a term and λ is the empty or top-position.
D ⊆ F is a set of unused constant predicate symbols. Different clauses are
assumed to not share any common variables.

Definition 3.1.3 (The inference system SP)
Let > be a total simplification ordering (extended to orderings >L and >C

on literals and clauses), let sel be a selection function, and let D be a set of
fresh propositional constants. The inference system SP consists of the following
inference rules:

• Equality Resolution:

(ER)
u 6'v ∨R
σ(R)

if σ = mgu(u, v) and σ(u 6'
v) is eligible for resolution.

8

• Superposition into negative literals:

(SN)
s' t ∨ S u 6'v ∨R

σ(u[p← t] 6'v ∨ S ∨R)

if σ = mgu(u|p, s), σ(s) 6<
σ(t), σ(u) 6< σ(v), σ(s' t)
is eligible for paramodula-
tion, σ(u 6'v) is eligible for
resolution, and u|p /∈ V .

• Superposition into positive literals:

(SP)
s' t ∨ S u'v ∨R

σ(u[p← t]'v ∨ S ∨R)

if σ = mgu(u|p, s), σ(s) 6<
σ(t), σ(u) 6< σ(v), σ(s' t)
is eligible for paramodula-
tion, σ(u'v) is eligible for
resolution, and u|p /∈ V .

• Simultaneous superposition into negative literals

(SSN)
s' t ∨ S u 6'v ∨R

σ(S ∨ (u 6'v ∨R)[u|p ← t])

if σ = mgu(u|p, s), σ(s) 6<
σ(t), σ(u) 6< σ(v), σ(s' t)
is eligible for paramodula-
tion, σ(u 6'v) is eligible for
resolution, and u|p /∈ V .

This inference rule is an alternative to (SN) that performs better in prac-
tice.

• Simultaneous superposition into positive literals

(SSP)
s' t ∨ S u'v ∨R

σ(S ∨ (u'v ∨R)[u|p ← t])

if σ = mgu(u|p, s), σ(s) 6<
σ(t), σ(u) 6< σ(v), σ(s' t)
is eligible for paramodula-
tion, σ(u 6'v) is eligible for
resolution, and u|p /∈ V .

This inference rule is an alternative to (SP) that performs better in prac-
tice.

• Equality factoring :

(EF)
s' t ∨ u'v ∨R

σ(t 6'v ∨ u'v ∨R)

if σ = mgu(s, u), σ(t) 6>
σ(s) and σ(s' t) eligible for
paramodulation.

• Rewriting of negative literals:

(RN)
s' t u 6'v ∨R

s' t u[p← σ(t)] 6'v ∨R
if u|p = σ(s) and σ(s) > σ(t).

9

• Rewriting of positive literals2:

(RP)
s' t u'v ∨R

s' t u[p← σ(t)]'v ∨R

if u|p = σ(s), σ(s) > σ(t),
and if u' v is not eligible for
paramodulation or v > u or
p 6= λ.

• Clause subsumption:

(CS)
C σ(C ∨R)

C

where C and R are arbitrary
(partial) clauses and σ is a
substitution.

• Equality subsumption:

(ES)
s' t u[p← σ(s)]'u[p← σ(t)] ∨R

s' t

• Positive simplify-reflect3:

(PS)
s' t u[p← σ(s)] 6'u[p← σ(t)] ∨R

s' t R

• Negative simplify-reflect

(NS)
s 6' t σ(s) 6'σ(t) ∨R

s 6' t R

• Tautology deletion:

(TD)
C

if C is a tautology4

2A stronger version of (RP) is proven to maintain completeness for Unit and Horn prob-
lems and is generally believed to maintain completeness for the general case as well [Bac98].
However, the proof of completeness for the general case seems to be rather involved, as it re-
quires a very different clause ordering than the one introduced [BG94], and we are not aware
of any existing proof in the literature. The variant rule allows rewriting of maximal terms of
maximal literals under certain circumstances:

(RP’)
s' t u'v ∨R

s' t u[p← σ(t)]'v ∨R

if u|p = σ(s), σ(s) > σ(t) and if u'
v is not eligible for paramdulation or
u 6> v or p 6= λ or σ is not a variable
renaming.

This stronger rule is implemented successfully by both E and SPASS [Wei99].
3In practice, this rule is only applied if σ(s) and σ(t) are >-incomparable – in all other

cases this rule is subsumed by (RN) and the deletion of resolved literals (DR).

10

• Deletion of duplicate literals:

(DD)
s' t ∨ s' t ∨R

s' t ∨R

• Deletion of resolved literals:

(DR)
s 6's ∨R

R

• Destructive equality resolution:

(DE)
x 6'y ∨R
σ(R)

if x, y ∈ V, σ = mgu(x, y)

• Contextual literal cutting :

(CLC)
σ(C ∨R ∨ s'̇t) C ∨ s'̇t
σ(C ∨R) C ∨ s'̇t

where s'̇t is the negation of
s'̇t and σ is a substitution

This rule is also known as subsumption resolution or clausal simplification.

• Condensing :

(CON)
l1 ∨ l2 ∨R
σ(l1 ∨R)

if σ(l1) = σ(l2) and σ(l1 ∨ R)
subsumes l1 ∨ l2 ∨R

• Introduce definition5

(ID)
R ∨ S

d ∨R ¬d ∨ S

if R and S do not share any
variables, d ∈ D has not been
used in a previous definition
and R does not contain any
symbol from D

• Apply definition

(AD)
σ(d ∨R) R ∨ S
σ(d ∨R) ¬d ∨ S

if σ is a variable renaming, R
and S do not share any vari-
ables, d ∈ D and R does not
contain any symbol from D

4This rule can only be implemented approximately, as the problem of recognizing tautolo-
gies is only semi-decidable in equational logic. Current versions of E try to detect tautologies
by checking if the ground-completed negative literals imply at least one of the positive literals,
as suggested in [NN93].

5This rule is always exhaustively applied to any clause, leaving n split-off clauses and one
final link clause of all negative propositions.

11

Guillaume Burel: EuroProofNet WG2 meeting/PAAR Workshop, 2022-08-12

Proofs in Dedukti 32/46

Reconstructing proofs

Proof trace

But often, provers produce at least a proof trace:

I list of formulas that were derived to obtain the proof

I sometimes with more informations

• premises
• name of the inference rules
• theory
• . . .

Guillaume Burel: EuroProofNet WG2 meeting/PAAR Workshop, 2022-08-12

Proofs in Dedukti 33/46

Reconstructing proofs

Example of trace: TSTP format

Output format of E, Vampire, Zipperposition, . . .

List of formulas

I each annotated by an inference tree whose leafs are other formulas

cnf(c_0_60,plain,

(join(X1,join(X2,X3)) = join(X2,join(X1,X3))),

inference(rw,[status(thm)],

[inference(spm,[status(thm)],[c_0_30,c_0_18]),

c_0_30])).

Independent of the proof calculus

Guillaume Burel: EuroProofNet WG2 meeting/PAAR Workshop, 2022-08-12

Proofs in Dedukti 34/46

Reconstructing proofs

Example of trace: TSTP format

Output format of E, Vampire, Zipperposition, . . .

List of formulas

I each annotated by an inference tree whose leafs are other formulas

cnf(c_0_60,plain,

(join(X1,join(X2,X3)) = join(X2,join(X1,X3))),

inference(rw,[status(thm)],

[inference(spm,[status(thm)],[c_0_30,c_0_18]),

c_0_30])).

Independent of the proof calculus

Guillaume Burel: EuroProofNet WG2 meeting/PAAR Workshop, 2022-08-12

Proofs in Dedukti 34/46

Reconstructing proofs

Proof reconstruction

Use the content of the proof trace to reconstruct a Dedukti proof

Idea:

I Reprove each step using a Dedukti producing tool

I Combine the proofs of the steps to get a proof of the original formula

Try to be agnostic:

I w.r.t. the prover that produces the trace

I w.r.t. the prover that reprove the steps

Guillaume Burel: EuroProofNet WG2 meeting/PAAR Workshop, 2022-08-12

Proofs in Dedukti 35/46

Reconstructing proofs

Ekstrakto

[El Haddad 2021]

I Input: TSTP proof trace

I Output: Reconstructed Lambdapi proof

https://github.com/Deducteam/ekstrakto

Guillaume Burel: EuroProofNet WG2 meeting/PAAR Workshop, 2022-08-12

Proofs in Dedukti 36/46

https://github.com/Deducteam/ekstrakto

Reconstructing proofs

Ekstrakto architecture

Problem
.p

Proof trace
.s

Proof step
.p

Lambdapi proof
.lp

Problem signature
.lp

Global Lambdapi proof
.lp

Lambdapi producing ATP
e.g. Zenon modulo

EkstraktoATP
e.g. E

Proof step
.p

Lambdapi proof
.lp

Lambdapi producing ATP
e.g. Zenon modulo

Proof step
.p

Lambdapi proof
.lp

Lambdapi producing ATP
e.g. Zenon modulo

Guillaume Burel: EuroProofNet WG2 meeting/PAAR Workshop, 2022-08-12

Proofs in Dedukti 37/46

Reconstructing proofs

Experimental evaluation

Benchmark:

I CNF problems of TPTP v7.4.0 (8118 files)

Trace producers:

I E and Vampire

Step provers:

I Zenon modulo and ArchSat

Guillaume Burel: EuroProofNet WG2 meeting/PAAR Workshop, 2022-08-12

Proofs in Dedukti 38/46

Reconstructing proofs

Results

Percentage of Lambdapi proofs on the extracted TPTP files
Prover % E % Vampire

ZenonModulo 87% 60%
ArchSAT 92% 81%

ZenonModulo ∪ ArchSAT 95% 85%

Percentage of complete Lambdapi proofs
Prover % E TSTP % Vampire TSTP

ZenonModulo 45% 54%
ArchSAT 56% 74%

ZenonModulo ∪ ArchSAT 69% 83%

Guillaume Burel: EuroProofNet WG2 meeting/PAAR Workshop, 2022-08-12

Proofs in Dedukti 39/46

Reconstructing proofs

Non provable steps

Problem:

I some steps are not provable
their conclusion is not a logical consequence of their premises

I OK because they preserve provability

I but Ekstrakto cannot work for them

Main instance: Skolemization

Γ, ~∀x,∃y, A[~x, y] ` B iff Γ, ~∀x,A[~x, f(~x)] ` B for a fresh f

Present in the CNF transformation used by almost all ATPs

Guillaume Burel: EuroProofNet WG2 meeting/PAAR Workshop, 2022-08-12

Proofs in Dedukti 40/46

Reconstructing proofs

Non provable steps

Problem:

I some steps are not provable
their conclusion is not a logical consequence of their premises

I OK because they preserve provability

I but Ekstrakto cannot work for them

Main instance: Skolemization

Γ, ~∀x,∃y, A[~x, y] ` B iff Γ, ~∀x,A[~x, f(~x)] ` B for a fresh f

Present in the CNF transformation used by almost all ATPs

Guillaume Burel: EuroProofNet WG2 meeting/PAAR Workshop, 2022-08-12

Proofs in Dedukti 40/46

Reconstructing proofs

Skonverto

[El Haddad 2021]

Inputs:

I an axiom and its Skolemized version

I a Lambdapi proof using the latter

Output:

I a Lambdapi proof using the non-Skolemized axiom

Guillaume Burel: EuroProofNet WG2 meeting/PAAR Workshop, 2022-08-12

Proofs in Dedukti 41/46

Reconstructing proofs

Content

Implementation of a constructive proof of Skolem theorem by [Dowek and
Werner 2005]

I in the context of first-order natural deduction

Guillaume Burel: EuroProofNet WG2 meeting/PAAR Workshop, 2022-08-12

Proofs in Dedukti 42/46

Reconstructing proofs

symbol axiom : Prf (∀ (λ X, ∃ (λ Y, (p X (s Y)))));

symbol goal

(ax_tran : Prf (∀ (λ X1 : El ι , ∀ (λ X2 : El ι , ∀ (λ X3 : El ι ,
(p X1 X2) ⇒ ((p X2 X3) ⇒ (p X1 X3)))))))

(ax_step : Prf (∀ (λ X1 : El ι , (p X1 (s (f X1))))))

(ax_congr : Prf (∀ (λ X1 : El ι , ∀ (λ X2 : El ι ,
(p X1 X2) ⇒ (p (s X1) (s X2))))))

(ax_goal : Prf (¬ (∃ (λ X4 : El ι , ((p a (s (s X4))))))))

: Prf ⊥
:= ax_goal (∃I (λ X4 : El ι , p a (s (s X4))) (f (f a))

(ax_tran a (s (f a)) (s (s (f (f a))))

(ax_step a)

(ax_congr (f a) (s (f (f a))) (ax_step (f a)))));

Guillaume Burel: EuroProofNet WG2 meeting/PAAR Workshop, 2022-08-12

Proofs in Dedukti 43/46

Reconstructing proofs

symbol goal

(ax_tran : Prf (∀ (λ X1 : El ι , ∀ (λ X2 : El ι , ∀ (λ X3 : El ι ,
(p X1 X2) ⇒ ((p X2 X3) ⇒ (p X1 X3)))))))

(ax_step : Prf (∀ (λ X, ∃ (λ Y, (p X (s Y))))))

(ax_congr : Prf (∀ (λ X1 : El ι , ∀ (λ X2 : El ι ,
(p X1 X2) ⇒ (p (s X1) (s X2))))))

(ax_goal : Prf (¬ (∃ (λ X4 : El ι , ((p a (s (s X4))))))))

: Prf ⊥
:= ax_goal (λ r h, ∃E (λ z, p a (s z)) (ax_step a) r

(λ z a1, ∃E (λ z0 , p z (s z0)) (ax_step z) r

(λ z0 a2 , h z0 (ax_tran a (s z) (s (s z0)) a1

(ax_congr z (s z0) a2)))));

Guillaume Burel: EuroProofNet WG2 meeting/PAAR Workshop, 2022-08-12

Proofs in Dedukti 44/46

Conclusion

Outline

� Introduction

� What is Dedukti

� Intrumenting provers for Dedukti proof production

� Reconstructing proofs

� Conclusion

Guillaume Burel: EuroProofNet WG2 meeting/PAAR Workshop, 2022-08-12

Proofs in Dedukti 45/46

Conclusion

Conclusion

Dedukti as a universal back-end for proof checking and interoperability

Instrumenting a prover to produce Dedukti proofs

I good if you start your prover from scratch

Reconstructing proofs

I more adapted for existing provers

I cannot reconstruct all proofs

I also for proof assistants

• PVS, Atelier B

Guillaume Burel: EuroProofNet WG2 meeting/PAAR Workshop, 2022-08-12

Proofs in Dedukti 46/46

	Introduction
	What is Dedukti
	Intrumenting provers for Dedukti proof production
	Zenon Modulo

	Reconstructing proofs
	Conclusion

