Proofs in Dedukti

EuroProofNet WG2 meeting/PAAR Workshop

Guillaume Burel

Friday August 12th, 2022

Samovar, ENSIIE

Challenges in Automated Theorem Proving

Cooperation

- between provers/solvers
- with proof assistants

Trust

- checkable proofs
- reproducibility

Dedukti as a solution

Proof interoperability

- bridge between proof systems

Proof (re)checking

- from various sources

Outline

- Introduction
- What is Dedukti
- Intrumenting provers for Dedukti proof production
- Reconstructing proofs
- Conclusion

What is Dedukti

Dedukti

A logical framework

- a tool in which logical systems can be expressed
- logics
- calculi
- proofs

What is Dedukti

Theoretical foundations

$\lambda \Pi$-calculus modulo theory
based on the Curry-Howard-De Bruijn correspondence

- λ-calculus with dependent types
enhanced with rewriting
- equate terms/formulas that are congruent

What is Dedukti

(At least) Two implementations

Dedukti Core system
proof checker
https://github.com/Deducteam/Dedukti
lambdapi more interactive (proof assistant)
tactics, new friendlier syntax
https://github.com/Deducteam/lambdapi

What is Dedukti

Why Dedukti?

Universal

- can embed a wide range of logics FOL, HOL, CoC, . .
- inputs from various tools

ATPs, HOL Light, Isabelle/HOL, Matita, Coq, ...

- outputs to various tools

Coq, Lean, PVS, Matita, OpenTheory (see logipedia.science)
Simple

- small kernel
- can be reimplemented independently

Efficient

- can check proofs $>$ 50GB

What is Dedukti

Heart of Dedukti

Declaration of symbols

- with their type
symbol name : type;

Declaration of rewrite rules

```
rule left_hand side \hookrightarrow right_hand side;
```


What is Dedukti

Example

```
symbol nat : TYPE;
symbol 0 : nat;
symbol S : nat }->\mathrm{ nat;
symbol + : nat }->\mathrm{ nat }->\mathrm{ nat;
notation + infix left 10;
rule 0 + $x \hookrightarrow $x;
rule S $y + $x \hookrightarrow S ($y + $x);
```


What is Dedukti

Proof checking?

When a rule is declared

- subject reduction is checked:

However the left-hand side can be typed, the right-hand side can be typed with the same type (modulo previous rewrite rules)

What is Dedukti

Example of checking

```
symbol nat : TYPE;
symbol 0 : nat;
symbol S : nat }->\mathrm{ nat;
symbol + : nat }->\mathrm{ nat }->\mathrm{ nat;
notation + infix left 10;
rule 0 + $x }¢$\textrm{x}
rule S $y + $x S S ($y + $x);
symbol P : nat }->\mathrm{ TYPE;
symbol f : \Pi x : nat, P x;
rule f (0 + S $x) ¢ f (S 0 + $x);
```


What is Dedukti

Embedding a logic into Dedukti

Type for propositions:

```
symbol Prop : TYPE;
```

Deep embedding of connectives:

```
symbol \perp : Prop;
symbol }=>\mathrm{ : Prop }->\mathrm{ Prop }->\mathrm{ Prop;
notation }=>\mathrm{ infix right 10;
```

$\Pi p: \operatorname{Prop},((p \Rightarrow \perp) \Rightarrow \perp) \Rightarrow p$

What is Dedukti

First order

Type for term sorts:

```
symbol Set : TYPE;
symbol \iota : Set;
```

Embedding Set terms into Dedukti terms:

```
symbol El : Set }->\mathrm{ TYPE;
```

Deep embedding of quantifiers:

```
symbol }\forall : \Pi a : Set, (El a -> Prop) -> Prop
```

$(\forall x, p x) \Rightarrow p c \quad$ embedded as $\forall \iota(\lambda \mathrm{x}, \mathrm{p} \mathrm{x}) \Rightarrow \mathrm{p} \mathrm{c}$

What is Dedukti

Proofs

Embedding Prop into Dedukti level:

$$
\text { symbol Prf : Prop } \rightarrow \text { TYPE; }
$$

Making connectives more shallow:

```
l
\equiv\operatorname{Prf ( }\forall\iota(\lambda\textrm{x},\textrm{p x}))->\operatorname{Prf (p c)}
\equiv(\Pix : El \iota, Prf (p x)) -> Prf (p c)
```


What is Dedukti

Dedukti terms as proofs

Proving $(\forall x, p x) \Rightarrow p c$
symbol my_theorem :
П с : El ι,
Π p : El $\iota \rightarrow$ Prop,
$\operatorname{Prf}(\forall \iota(\lambda \mathrm{x}, \mathrm{p} \mathrm{x}) \Rightarrow \mathrm{p} \mathrm{c})$;
rule my_theorem \$c \$p $\hookrightarrow \lambda$ pp, pp \$c;

Alternative syntax:

$$
\begin{aligned}
& \text { symbol my_theorem_alt }(c: \text { El } \iota)(p: \text { El } \iota \rightarrow \text { Prop }): \\
& \quad \operatorname{Prf}(\forall \iota(\lambda x, p x) \Rightarrow p \mathrm{c}) \\
& :=\lambda p p, p p c ;
\end{aligned}
$$

Outline

- Introduction
- What is Dedukti
- Intrumenting provers for Dedukti proof production - Zenon Modulo
- Reconstructing proofs
- Conclusion

Trusting automated theorem provers

Automated theorem provers:

- quite big piece of software
- complex proof calculi
- finely tuned, optimization hacks

Trust?

- Originally, only answer "yes" / "no" (more often, "maybe")
- More and more, produce at least proof traces (i.e. big steps)

Trusting ATPs

To increase confidence:

- either build a certified proof checker for proof traces
- e.g. Coq certified proof checker for DRAT proof traces of SAT solvers
- or directly produce a proof checkable by your favorite assistant

Trusting ATPs

To increase confidence:

- either build a certified proof checker for proof traces
- e.g. Coq certified proof checker for DRAT proof traces of SAT solvers
- or directly produce a proof checkable by your favorite assistant

Instrumenting a prover to produce a proof

Pros:

- Access to all needed informations

Cons:

- Needs to embed the calculus of the prover into Dedukti
- Needs to know precisely the code of the prover
- more or less easy depending on the complexity of the code/the proof calculus
- easier if a proof output was designed from the start (e.g. in Zenon)

Can only be done for a few provers

Provers outputing Dedukti proofs

iProverModulo: extension of iProver to handle Deduction Modulo Theory https://github.com/gburel/iProverModulo.git

Zenon Modulo: extension of Zenon to handle Deduction Modulo Theory and arithmetic
https://github.com/Deducteam/zenon_modulo.git
ArchSAT: SMT solver
https://github.com/Gbury/archsat

Translating proofs

First, need to carefully choose in which theory we are working

- e.g. D[FOL]

Then, two approaches:

- Directly translating proofs into Dedukti
- iProverModulo
- Embedding the proof calculus into Dedukti
- Zenon Modulo

Zenon Modulo

[Delahaye, Doligez, Gilbert, Halmagrand, and Hermant 2013]

- extension of Zenon to Deduction Modulo Theory
- tableau-based
- polymorphic first-order logic with equality

Tableau proofs

Proofs by contradiction

\simeq bottom-up sequent-calculus with metavariables

$$
\frac{P, \neg P}{\odot} \odot \quad \frac{\neg(A \Rightarrow B)}{\neg A, B} \alpha_{\neg \Rightarrow}
$$

$$
\frac{\neg(A \wedge B)}{\neg A \quad \mid \quad \neg B} \beta_{\neg \wedge}
$$

Example, proof by refutation of $P \Rightarrow(P \wedge P)$:

$$
\begin{aligned}
& \frac{\neg(P \Rightarrow(P \wedge P))}{P} \alpha_{\neg \Rightarrow} \\
& \frac{\neg(P \wedge P)}{\frac{\neg P}{\odot} \odot \quad \frac{\neg P}{\odot}} \beta_{\neg \wedge}
\end{aligned}
$$

Deep embedding of proof calculus
$\frac{P, \neg P}{\odot} \odot:$
symbol Rax $\mathrm{p}: \operatorname{Prf} \mathrm{p} \rightarrow \operatorname{Prf}(\neg \mathrm{p}) \rightarrow \operatorname{Prf} \perp$;
$\frac{\neg(A \Rightarrow B)}{\neg A, B} \alpha_{\neg \Rightarrow}$:
symbol $\mathrm{R} \neg \Rightarrow \mathrm{a}$ b : (Prf a $\rightarrow \operatorname{Prf}(\neg \mathrm{b}) \rightarrow \operatorname{Prf} \perp) \rightarrow \operatorname{Prf}(\neg(\mathrm{a} \Rightarrow \mathrm{b})) \rightarrow \operatorname{Prf} \perp$;

$$
\frac{\neg(A \wedge B)}{\neg A \quad \neg B} \beta_{\neg \wedge}:
$$

symbol $\mathrm{R} \neg \wedge \mathrm{a}$ b $:(\operatorname{Prf}(\neg \mathrm{a}) \rightarrow \operatorname{Prf} \perp) \rightarrow(\operatorname{Prf}(\neg \mathrm{b}) \rightarrow \operatorname{Prf} \perp) \rightarrow$ $\operatorname{Prf}(\neg(\mathrm{a} \wedge \mathrm{b})) \rightarrow \operatorname{Prf} \perp$;

Deep translation of the example

(after η-reduction to make it more readable)

```
opaque symbol goal : Prfc}(p=>(p\wedge p)):
    R=>p (p}\wedge p
        (\lambda \pi, R\neg^ p p (Rax p \pi) (Rax p \pi));
```


Making the embedding more shallow

Defines Tableaux rules as Dedukti terms, prove that they are derivable in FOL:

```
rule Rax }\hookrightarrow\lambda p h \pi, \pi h
rule R}\neg\wedge\hookrightarrow\lambda p q h1 h2 h3
    h1 ( }\lambda\mathrm{ h5, h2 ( }\lambda\mathrm{ h6, h3 ( }\lambda\mathrm{ r m, m h5 h6)));
rule R}=>\hookrightarrow\lambda p q h1 h2
    h2 ( }\lambda\mathrm{ h3, h1 h3 ( }\lambda\mathrm{ h4, h2 ( }\lambda,\ldots,h4)) q)
```


Shallow proof from the example

```
assert \vdash goal : Prfc}(p=>(p ^ p))
assert }\vdash\mathrm{ goal 三
    \lambda h2, h2 ( }\lambda\mathrm{ h3, h2 ( }\lambda\ldots\ldots\pi,\pi h3 h3) (p ^ p))
```


Reconstructing proofs

Outline

- Introduction
- What is Dedukti
- Intrumenting provers for Dedukti proof production
- Reconstructing proofs
- Conclusion

Reconstructing proofs

Limits of instrumentation

Provers can be hard to instrument to produce exact Dedukti proofs

- large piece of software
- developers not expert in $\lambda \Pi$-calculus modulo theory
- non stable and quite big proof calculus

Reconstructing proofs

Proof calculus of E

Reconstructing proofs

Proof trace

But often, provers produce at least a proof trace:

- list of formulas that were derived to obtain the proof
- sometimes with more informations
- premises
- name of the inference rules
- theory
- ...

Reconstructing proofs

Example of trace: TSTP format

Output format of E, Vampire, Zipperposition, ...
List of formulas

- each annotated by an inference tree whose leafs are other formulas

```
cnf(c_0_60,plain,
    ( join(X1,join(X2,X3)) = join(X2,join(X1,X3)) ),
    inference(rw, [status(thm)],
        [inference(spm,[status(thm)],[c_0_30,c_0_18]),
            c_0_30])).
```


Reconstructing proofs

Example of trace: TSTP format

Output format of E, Vampire, Zipperposition, ...
List of formulas

- each annotated by an inference tree whose leafs are other formulas

```
cnf(c_0_60,plain,
    ( join(X1,join(X2,X3)) = join(X2,join(X1,X3)) ),
    inference(rw, [status(thm)],
            [inference(spm,[status(thm)],[c_0_30,c_0_18]),
        c_0_30])).
```

Independent of the proof calculus

Reconstructing proofs

Proof reconstruction

Use the content of the proof trace to reconstruct a Dedukti proof Idea:

- Reprove each step using a Dedukti producing tool
- Combine the proofs of the steps to get a proof of the original formula Try to be agnostic:
- w.r.t. the prover that produces the trace
- w.r.t. the prover that reprove the steps

Reconstructing proofs

Ekstrakto

[El Haddad 2021]

- Input: TSTP proof trace
- Output: Reconstructed Lambdapi proof
https://github.com/Deducteam/ekstrakto

Reconstructing proofs

Ekstrakto architecture

Reconstructing proofs

Experimental evaluation

Benchmark:

- CNF problems of TPTP v7.4.0 (8118 files)

Trace producers:

- E and Vampire

Step provers:

- Zenon modulo and ArchSat

Results

Percentage of Lambdapi proofs on the extracted TPTP files

Prover	$\%$ E	$\%$ VAMPIRE
ZenonModulo	87%	60%
ArchSAT	92%	81%
ZenonModulo \cup ArchSAT	95%	85%

Percentage of complete Lambdapi proofs

Prover	$\%$ E TSTP	\% VAMPIRE TSTP
ZenonModulo	45%	54%
ArchSAT	56%	74%
ZenonModulo \cup ArchSAT	69%	83%

Reconstructing proofs

Non provable steps

Problem:

- some steps are not provable their conclusion is not a logical consequence of their premises
- OK because they preserve provability
- but Ekstrakto cannot work for them

Reconstructing proofs

Non provable steps

Problem:

- some steps are not provable their conclusion is not a logical consequence of their premises
- OK because they preserve provability
- but Ekstrakto cannot work for them

Main instance: Skolemization

$$
\Gamma, \overrightarrow{\forall x}, \exists y, A[\vec{x}, y] \vdash B \text { iff } \Gamma, \overrightarrow{\forall x}, A[\vec{x}, f(\vec{x})] \vdash B \text { for a fresh } f
$$

Present in the CNF transformation used by almost all ATPs

Reconstructing proofs

Skonverto

[El Haddad 2021]
Inputs:

- an axiom and its Skolemized version
- a Lambdapi proof using the latter

Output:

- a Lambdapi proof using the non-Skolemized axiom

Reconstructing proofs

Content

Implementation of a constructive proof of Skolem theorem by [Dowek and Werner 2005]

- in the context of first-order natural deduction
symbol axiom $: \operatorname{Prf}(\forall(\lambda X, \exists(\lambda Y,(p X(s Y)))) ;$
symbol goal

$$
\begin{aligned}
& \text { (ax_tran : Prf }(\forall \text { (} \lambda 1 \text { : El } \iota, \forall(\lambda \text { X2 : El } \iota, \forall(\lambda \text { X3 : El } \\
& (\mathrm{p} X 1 \mathrm{X} 2) \Rightarrow((\mathrm{p} \text { X2 X3) } \Rightarrow(\mathrm{p} \text { X1 X3))))))) } \\
& \text { (ax_step : Prf (} \forall(\lambda \text { X1 : El } \iota,(p \mathrm{X} 1(\mathrm{~s}(f \mathrm{X} 1)))))) \\
& \text { (ax_congr : Prf (} \forall \text { (} \lambda \text { X1 : El } \iota, \forall(\lambda \text { X2 : El } \iota \text {, } \\
& (\mathrm{p} \text { X1 X2) } \Rightarrow(\mathrm{p}(\mathrm{~s} \mathrm{X} 1)(\mathrm{s} \text { X2))))) }) \\
& \text { (ax_goal : Prf (} \neg(\exists \text { (} \lambda \text { X4 : El } \iota,((\mathrm{p} \operatorname{a}(\mathrm{~s}(\mathrm{~s} \text { X4)))))))) } \\
& \text { : Prf } \perp \\
& :=\text { ax_goal (} \exists \mathrm{I}(\lambda \mathrm{X} 4 \text { : El } \iota, \mathrm{p} \text { a (s (s X4))) (f (f a)) } \\
& \text { (ax_tran a (s (f a)) (s (s (f (f a)))) } \\
& \text { (ax_step a) } \\
& \text { (ax_congr (f a) (s (f (f a))) (ax_step (f a))))); }
\end{aligned}
$$

```
symbol goal
    (ax_tran : Prf ( }\forall\mathrm{ ( }\lambda\mathrm{ X1 : El }\iota,\forall (\lambda X2 : El \iota, \forall ( \lambda X3 : El
        (p X1 X2) }=>((\textrm{p X2 X3) }=>(\textrm{p X1 X3)))))))
    (ax_step : Prf (\forall (\lambda X, \exists (\lambda Y, (p X (s Y))))))
    (ax_congr : Prf ( }\forall\mathrm{ ( }\lambda\mathrm{ X1 : El }\iota,\forall (\lambda X2 : El \iota
        (p X1 X2) }=>(\textrm{p}(\textrm{s X1) (s X2))))))
    (ax_goal : Prf (\neg (\exists (\lambda X4 : El \iota, ((p a (s (s X4))))))))
    : Prf \perp
:= ax_goal ( }\lambda\mathrm{ r h, ヨE ( }\lambda\textrm{z},\textrm{p}=\textrm{a}(\textrm{s}z)) (ax_step a) r
    (\lambda z a1, \existsE (\lambda z0, p z (s z0)) (ax_step z) r
    (\lambda z0 a2, h z0 (ax_tran a (s z) (s (s z0)) a1
    (ax_congr z (s z0) a2)))));
```


Conclusion

Outline

- Introduction
- What is Dedukti
- Intrumenting provers for Dedukti proof production
- Reconstructing proofs
- Conclusion

Conclusion

Dedukti as a universal back-end for proof checking and interoperability
Instrumenting a prover to produce Dedukti proofs

- good if you start your prover from scratch

Reconstructing proofs

- more adapted for existing provers
- cannot reconstruct all proofs
- also for proof assistants
- PVS, Atelier B

