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0 has type Nat, but what is the type of Nat?
Some universe U

In type theory, (small) types can be given the type of a universe
Many flavours: predicative/impredicative, cumulative/non-cumulative, etc
In many proof assistants: Coq, Agda, Lean, Matita

This talk How to define them in Dedukti
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Universe styles in a logical framework

Ty : TYPE ([A type] :=[4] : Ty)
Tm: Ty — TYPE ([t : A] :=1t] : Tm [A])
Tarski style Coquand style Russell style
U:Ty U:Ty U:Ty
El: Tm U — Ty El: TmU~Ty:c TmU— Ty
u:TmU
Elu—U

In the Dedukti literature, we often use Russell style and change names
Ty ~ U
Tm ~ El

U ~ u 3/34
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Universe hierarchies
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Solution Stratify universes into an hierarchy

Us : TYPE

El; : Ug — TYPE forse S

us: Uy

Ely us — Uy for (s,s') € A

Tss : (A:Ug) = (B:Ely A= Uy) = Uy
Elg (71'3,5/ A B) — (.CIZ : Elg A) — Ely (B .T) for (8,8’,8”) eER

Finite encoding?

4/34



Universe hierarchies, finitely
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Universe hierarchies, finitely

S : TYPE
A:S—= S
R:S—8—=S8

U:S — TYPE
El:(s:S8)— Us— TYPE

u:(s:S8)—=U(As)
El _(us)—Us

m:(s8:8) = (A:Us)—» (B:ElsA—Us)—=U(Rs5s)
El _(rss AB)— (z:El s A) - El s (Bua)
5/34
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Universe Polymorphism

Sometimes one wishes to use a definition at multiple universes
(e.g. id Nat but also id U).

Bad solution. Define a new idg for each universe Us.

Universe polymorphism allows definitions that can be used
at multiple universes

id; :ITA: U;A— A:=XA z.x
We have idg Nat 0 = 0 and idy Uy Nat = Nat

In Dedukti Level (= sort) quantification can be simulated directly
by framework's function type

However, often we require levels to satisfy a specific equational theory.

This is the hard part
7/34
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Genestier 20 Rewrite system to decide ~
Based on existence of canonical forms for levels
Requires AC matching and AC equivalence

Blanqui 22 AC-matehing normalized rewriting
rUyUr~zUzUy — Uy

Felicissimo 23 Abandon idea of encoding ~ with rewriting
We have ~ - —C—— - ~, so can postpone =~ to end of conversion check

AC-matehing/normalized-rewriting syntactic matching + decide ~

If Dedukti+AC is ok, why not Dedukti+E for arbitrary E?

Takeaway message No way to encode in vanilla Dedukti
Moreover, to show confluence, all 3 options require confinement
or showing SN before confluence (reason: non-left-linear rules)
10/34
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Introduction

@ In theorem provers like Lean and Coq, we have an infinite
universe hierarchy starting with the base universe (Sort 0) which is
reserved for propositions.
@ We must encode universe impredicativity in the context of
polymorphic types deriving from the rule:
I'HA:U, T,z:AFB:Uyp
I'FVy: A B: Ui(Z,K’)

where i (i.e. imax, “impredicative max") has the semantics:

o
i(M,):{o, if ¢/ =0

max(¢,¢'), otherwise.

@ In total, we have the following grammar for universe terms:
C:=0]s(0) |m )i, 0) |

where z is from a countable set of variables X.
We denote this set of terms by L. 12/34



Introduction

e For a valuation o : X — N we define the value [{], of a level term ¢
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Introduction

e For a valuation o : X — N we define the value [{], of a level term ¢
according to the rules:

[0l =0 s O]o = s ([t]o) [z]o = o(?)
[m(¢, )] > = max([{]o, [(']+)

[[i(gagl)]]a - {0’ if [[E/]:IO' =0

max([{]s, [¢'],), otherwise.
@ We define semantic relations between universe terms:

(=pl < forallo: X =N, [, =[¢]s
<yl < forallo: X =N, [, <[¢]s

13/34



A predicative normal form

@ We can take some inspiration from the normal form introduced by
Genestier! for the predicative (no i) case. Here, we consider
“subterms” of the form n + x or n where n € N and x € X

@ We proceed by “pushing in” s's (i.e. constant additions) and
eliminating “dominated” subterms until we arrive at the form:

maxS(ny + x1,...,nk + T, N),

with all subterms incomparable.
@ For example:
1+mn(l+z,n(m5,x),y))

becomes

1 +m(l+z,mm(5,z),y))

!Guillaume Genestier. Encoding Agda Programs Using Rewriting,
https://drops.dagstuhl.de/opus/volltexte/2020,/12353
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@ We can take some inspiration from the normal form introduced by
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“subterms” of the form n + x or n where n € N and x € X

@ We proceed by “pushing in” s's (i.e. constant additions) and
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maxS(ny + x1,...,nk + T, N),

with all subterms incomparable.
@ For example:
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I

>
=n
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“minimal” subterms picked from a grammar and semantic such that:
© (existence) they completely characterize all universe terms,
that is, for all ¢ there exists {u1,...,u,} such that

t =maxS(ug,...,uUy).
@ (uniqueness) they uniquely identify a normal form, such that:

maxS(ui, ..., Up) =g maxS(v1,...,0m) < {U1, ..., Un} ={v1, ..., U}

when {u1, ..., up} and {v1, ..., v} are incomparable.

© (attainability) they are easily comparable via rewrite rules, so
we can reduce maxS(u, v) into maxS(u) when v <j; u, implying that

a normal form can be practically attained.

15/34
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Pulling out m/Pushing in s

@ We plan to produce a normal form consisting of the maximum of a
set of subterms. To this end, we must “pull out” the m operators until
they are no longer nested within any other operator.

e We immediately have s (m(z,y)) = m(s (z),s (y)). For the i case we
derive the equalities:

i(m(z,y),2) =m(i(z, 2),i(y, 2)) L— 8¢

@ To restrict s to variables, we can push it into the i terms according
to the equality:

s (i(z,y)) =n(s(y),i(s (z),y)) L= Sy

16/34
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Simplifying i subterms: RHS

@ We wish to simplify the righthand-side of the i operators in our
normal form. We can do so by observing the equalities:

i(u,i(v,w)) =m(i(u,w),i(v,w)) L— S
i(u,s (v)) =m(u,s (v))
i(u,0)=0

which serve to restrict the RHS to variables.

@ As there are no rules to further simplify the lefthand-side of i, we
accept the s, i, and 0 in the LHS of i as part of our subterms.

17/34



A pseudo-pseudo-normal form

@ This leads us to a normal form that looks like maxS(u1, ..., u,),
where the subterms w; are constructed from the grammar:

u:=s"(0) | s"(x) | i(u,x).

We denote this set of subterms by S ™.
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A pseudo-pseudo-normal form

@ This leads us to a normal form that looks like maxS(u1, ..., u,),
where the subterms w; are constructed from the grammar:

u:=s"(0) | s"(x) | i(u,x).

We denote this set of subterms by S ™.

@ However, this normal form is not enough! It does not guarantee
uniqueness of the representation.

@ For example, we have the equality:

maxS(i(x,y),1i(y,x)) = maxS(z,y).
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Deconstructing i(x,y)

@ This issue suggests that i(x,y) can be considered the maximum of
simpler component subterms. We can observe that:
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@ This issue suggests that i(x,y) can be considered the maximum of
simpler component subterms. We can observe that:

e y is always considered as part of the maximum, and so should be its
own subterm.

e z is only considered when y # 0, so this conditioning should be
reflected in its subterm.

@ So, we can think of a new subterm of the form A({y}, x) with the
semantic:

0, if 3y € S,o(y) =0

o(x), otherwise.

[A(S, )]s = {
@ With this idea, the previous counterexample is resolved:
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Establishing normal form subterms

@ However, recall our grammar:

uw:=s"(0) | s"(x) | i(u,x).
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Establishing normal form subterms

@ However, recall our grammar:
uw:=s"(0) | s"(x) | i(u,x).

Note that i's can be nested, and within an innermost i, the LHS can
be of the form s™(0) or s™(z).

@ So, we generalize our subterms to the forms A(S,z,n) and B(S,n)
where

0, if Jye S,o(y) =0

o(x) +n, otherwise.

0, if3dzesS ox)=0

n, otherwise.

[A(S,z,n)], = {

[[B(S7 x)]]a = {

We also refer to these new subterms as “sublevels”.
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Establishing normal form subterms

@ We can equate terms of the form:

i(i(--i(1(s"(y), x1),x2) -+, Tp—1),Tn)
with:

maxS( ).
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Establishing normal form subterms

@ We can equate terms of the form:

i(i(--i(1(s"(y), 1), x2) -+ Tp—1),Tn)

with: guarded by all of zo, ..., 2z,
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Establishing normal form subterms

@ We can equate terms of the form:
1(1( T l(l(sn(y)7x1)u 'CCQ) e )xn—1)7xn) Sn_f_ — S';:
with:

maxS(A({z1,....xn },y,n),A({z2,....,2n },21,0),.. . A{zn },2n—1,0),A({},2n,0)).

@ Similarly,
i(i(---1(3(s™(0),21), @2) -+, Tp—1), Tn) Spe — S
becomes:

maxS(B({z1,....xn },n),A({z2,....xn },21,0),....A{xn },2n—1,0),A({},zn,0))
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A pseudo-normal form

@ We now have the following subterm grammar:
w:=s"(0) | s"(z) | A({z1,....2n}, 2, n) | B{z1,.. ., 20}, 0)
We denote this set of subterms by S, ;.
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A pseudo-normal form

@ We now have the following subterm grammar:

u:=s"(0) | s"(z) | A{z1,...,zn},z,n) | B{z1,...,20},n)

We denote this set of subterms by S, ;.
@ However, this normal form still not sufficient to satisfy
the uniqueness property. We have the equalities:

maxS(s"(0)) =p maxS(B({},n)) Sp¢ — Saf
maxS(s"(x)) = maxS(A({}, z,n)),
and we also have
maxS(B(S,0)) = maxS() S — Saf

for all sets S (where we interpret maxS() as 0).
@ These equalities, when applied, allow us to restrict to a
subterm grammar consisting of sublevels alone:

u:=A{x1,...,zp}t,z,n) | B{z1,...,2,},n+1).
({z1 ba,n) | B({ay } ) 22/34



The true normal form

@ However, we still have the following equality:
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@ However, we still have the following equality:
maxS(A({}, z,0)) = maxS(A({z}, z,0))
which is an instance of the more general equality:
maxS(A(S,z,n)) = maxS(A(S U {z},2,n),B(S,n))  S¢— Snf

when = ¢ S.
@ Applying this last equality leads us to our final subterm grammar:

w:=A{z} U{z1,...,2n},z,n) | B{z1,...,20},n + 1).

We denote this set of subterms by Sys.
@ Thanks tothe £ =S, S — S, and S — Syf equations
we know that these subterms satisfy the existence property.
@ However, do they also satisfy uniqueness and attainability?
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Proving uniqueness

@ Recall the uniqueness property:
maxS(uy,...,U,) =g maxS(vi,...,vm) <= {ur, ..., up} ={v1, ..., Un}

when {uy, ..., uy} and {v1, ..., vy} are incomparable.
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maxS(uy,...,U,) =g maxS(vi,...,vm) <= {ur, ..., up} ={v1, ..., Un}

when {uy, ..., uy} and {v1, ..., vy} are incomparable.
@ In fact, our normal form is now sufficient to prove this!

@ We use the following lemma:

Lemma (Independence)

Let u € Spr and t = maxS(vy, ..., v,) with {vi, ..., v,} incomparable.
Then, u <y t if and only if there exists an i such that u <y v;.

Proof sketch: consider the u = A(S,z,n), u = B(S, z) cases in turn
and proceed by contradiction, assuming u £ v; for all i and
prove u % v, i.e. construct a o such that [u], > [v;], for all 4.
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Proving uniqueness

@ We now prove the uniqueness property:

Theorem (uniqueness)

For all incomparable {uy, ..., u,} and {vi, ..., vp} in Spf,

maxS(ui, ..., up) =g maxS(vy,...,vy) <= {ur, ..., up} ={v1, ..., vpn}.

o WTS that for any ¢, there exists a j such that u; = v; (and vice versa).

o For any u;, we know that u; <;; u <; v, so by the independence lemma
u; < vj for some j. Similarly, v; < uy for some k, so u; <y ug.

o Because the uy, ..., u, are incomparable, we know that ¢ = k, which
implies v; =(; w;, and (by another lemma) this implies v; = ;.

o The proof starting from v; is identical.
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Comparing subterms

@ We have the following simple tests for semantic inequality on Sy

A(S,z,n) <p A(T,y,m) <= SCTAz=yAn<m
B(S,n) <pB(I,m) <= SCTAn<m
B(S,n) <p A(T,z,m) <= (SCTAn<m+1)Vn=0,

all of which are easily implementable with a confluent rewrite system.
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Comparing subterms

@ We have the following simple tests for semantic inequality on Sy
A(S,z,n) <p A(T,y,m) <= SCTAz=yAn<m
B(S,n) <pB(I,m) <= SCTAn<m
B(S,n) <p A(T,z,m) <= (SCTAn<m+1)Vn=0,

all of which are easily implementable with a confluent rewrite system.

e Note also that A(T,z:,m) £ B(S,n), so this covers all possible cases
of u <pj v, and we thus achieve attainability of the normal form.
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Handling Universe Cumulativity
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Cumulativity

@ A subtyping relation.
@ Implicit in Coq
e Implicit (but optional) in Agda.

NEU()CUl---CUZ‘-”
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Cumulativity

@ A subtyping relation.
o Implicit in Coq.
e Implicit (but optional) in Agda.

NEU()CUl---CUZ‘-”

Broke type uniqueness!
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Make it explicit

Assaf 2014 System with explictit subtyping
o A lift function 1;: U; — U;41.

o Equivalent to implicit system.
But...

@ Confluence?

o Compatibility with universe polymorphism?
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The main problem

I'+A: Type; T,z: Ak A: Type;
I'1Tlz: A- B: Type, ;)

Many way to write the same term!

TﬂN—)N) =NNN—-14N =7 N—-N = N->1N
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Coq example

Definition cast (A: Type) := A.
Definition prod (A B: Type) := A -> B.

(* nat -> nat as Type instead of Set *)
Goal (prod nat nat) = (nat -> (cast nat)).
Proof.

now cbv.

Qed.
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My proposal

@ Choose a representative for each types.

@ Restrict the syntax.
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My proposal

@ Choose a representative for each types.

@ Restrict the syntax.

Cast of minimal/main types as representative.

11 (N — N) is the representative of the previous type.
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Minimal types M=z |u;|m,; M M| Unbox; C
Usable types C :=Box; M | tFC

Terms N=xz|NN|Xx:T-N|C

Types T:=U;|U,|EL,C|EIM |z: T T

Ely(15C) — EL,C
El; (Box; M) — EI;M
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Translate the creation of a product

Translate f: (A: Type;)):=A— A?
[A] is a usable type. Then, the procedure is the following.

@ Unbox the translation.

Unbox; [4]
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Translate the creation of a product

Translate f: (A: Type;)):=A— A?
[A] is a usable type. Then, the procedure is the following.

@ Unbox the translation.

o Create the product with the minimal type.
@ Box the result.

o Lift it.

17" [Boxz (m12,7) Unbox; [A] Unbos; [A])]

A way to get the sort of the minimal type!
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