
Proving code equivalence in database-driven applications

and sparql queries

Milena Vujošević Janičić

Faculty of Mathematics, University of Belgrade, Serbia
milena @ matf.bg.ac.rs

Key words:
software verification, code equivalence, embedded sql, sparql, smt solving, code refactoring

Software verification techniques for proving different kinds of code equivalence [19] are essen-
tial in the context of code refactoring and optimizations. Code refactoring and optimizations
are daily programming practices that are, on the one hand, necessary to maintain software
quality, but on the other increase the risk of introducing errors into the code [9, 17]. Therefore,
reliable automatic checks of the functional equivalence of the original and modified code are
highly desirable.

An important refactoring/optimization context is within database-driven applications. This
context includes the synergy of different programming languages and paradigms, namely impera-
tive/object-oriented programming (for example, c/c++) and declarative programming (sql).
Modifying such code may contain simultaneous changes (changes that include both sql and a
host language code) and that together preserve the overall code equivalence (but if considered
separately, the modified sql query itself or the modified imperative code itself are not seman-
tically equivalent to the originals). We propose a first-order logic modeling of sql queries and
link this modeling to c/c++ semantics implemented within the tool lav [18, 16, 21, 15]. We
implement an sqlav framework that is publicly available and open-source [20, 11]. sqlav
generates equivalence conditions that are efficiently solved by smt solvers. The framework con-
firms the equivalence of the modified code or points to potential problems and explains why
equivalence cannot be proven [10, 9].

Another context that we consider are queries written in sparql [6]. Sparql is the standard
query language and protocol for Linked Open Data [4] and can be used to express queries across
diverse data sources. Query equivalence can be reduced to a query containment problem,
a problem of deciding if each result of one query is also a result of another query (for any
given dataset) [5]. We consider the containment problem in both standard and subsumption
forms. We reduce sparql query containment problem to the satisfiability problem in first-order
logic and formally prove the soundness and completeness of the proposed approach [14]. We
implement a tool SpeCS [13, 14] which covers a wide range of the language constructs, e.g.
conjunctive queries, filter, union, optional, graph clauses, blank nodes, projections, subqueries,
built-in functions, etc. It also supports reasoning under the RDF schema entailment regime
[2]. As the query containment problem is reduced to the satisfiability problem in first-order
logic, conditions generated by SpeCS can be solved by first-order logic provers (like Vampire
[7]) or by smt solvers (like Z3 [3]). SpeCS is publicly available and open-source [12] and its
evaluation on standard benchmarks [8, 1] shows that it is fast, accurate and reliable [13, 14].



Proving code equivalence in database-driven applications and sparql queries Milena Vujošević Janičić

References

[1] Melisachew Chekol, Jérôme Euzenat, Pierre Genevès, and Nabil Layäıda. SPARQL Query Con-
tainment under Schema. Journal on Data Semantics, 7(3):133–154, April 2018.

[2] Melisachew Wudage Chekol, Jérôme Euzenat, Pierre Genevès, and Nabil Layäıda. SPARQL Query
Containment under RDFS Entailment Regime. In Proceedings of the 6th International Joint
Conference on Automated Reasoning, IJCAR’12, page 134–148. Springer, 2012.

[3] L. De Moura and N. Bjorner. Z3: An Efficient SMT Solver. In TACAS, pages 337–340, 2008.

[4] John P. McCrae. The Linked Open Data Cloud. Insight Centre for Data Analytics, retrieved
February 20th, 2022.

[5] Reinhard Pichler and Sebastian Skritek. Containment and Equivalence of Well-Designed SPARQL.
In Proceedings of the 33rd ACM SIGMOD-SIGACT-SIGART Symposium on Principles of
Database Systems, PODS ’14, pages 39–50. ACM, 2014.

[6] Eric Prud’hommeaux and A Seaborne. SPARQL 1.1 Query Language, 2013. https://www.w3.

org/TR/sparql11-query/.

[7] A. Riazanov and A. Voronkov. The Design and Implementation of VAMPIRE. AI Communica-
tions, 15(2-3):91–110, 2002.

[8] Muhammad Saleem, Claus Stadler, Qaiser Mehmood, Jens Lehmann, and Axel-Cyrille Ngonga
Ngomo. Generating SPARQL Query Containment Benchmarks Using the SQCFramework. In
Proceedings of the 17th International Semantic Web Conference (ISWC), 2018 - Posters & Demos,
volume 2180 of CEUR Workshop Proceedings. CEUR-WS.org, 2018.

[9] Mirko Spasić and Milena Vujošević Janičić. Verification supported refactoring of embedded SQL.
Software Quality Journal, pages 1–37, 2020.

[10] Mirko Spasić and Milena Vujošević Janičić. First steps towards proving functional equivalence of
embedded SQL. In Types for Proofs and Programs (TYPES), pages 78–79. Univ. Minho, 2018.

[11] Mirko Spasić and Milena Vujošević Janičić. GitHub repository: SQLC, 2020. https://github.

com/mirkospasic/sqlc, retrieved May 15, 2022.

[12] Mirko Spasić and Milena Vujošević Janičić. SPECS Web page, 2022. http://argo.matf.bg.ac.

rs/?content=specs, retrieved May 15, 2022.

[13] Mirko Spasić and Milena Vujošević Janičić. SpeCS — SPARQL Query Containment Solver. In
2020 Zooming Innovation in Consumer Technologies Conference (ZINC), pages 31–35, 2020.

[14] Mirko Spasić and Milena Vujošević Janičić. Solving the SPARQL Query Containment Problem
with SpeCS, 2022. Submitted to Journal of Web Semantics.

[15] Milena Vujošević Janičić. Concurrent Bug Finding Based on Bounded Model Checking. Interna-
tional Journal of Software Engineering and Knowledge Engineering, 30(05):669–694, 2020.

[16] M. Vujošević Janičić, M. Nikolić, D. Tošić, and V. Kuncak. Software verification and graph sim-
ilarity for automated evaluation of students’ assignments. Information and Software Technology,
55(6), 2013.

[17] Milena Vujošević Janičić. Maintenance and maintainability within agile software development.
Science of Maintenance Journal, 1(1):9–19, 2021.

[18] Milena Vujošević Janičić and Viktor Kuncak. Development and Evaluation of LAV: An SMT-
Based Error Finding Platform. In Verified Software, Theories, Tools and Experiments (VSTTE),
Lecture Notes in Computer Science (LNCS), pages 98–113. Springer, 2012.

[19] Milena Vujošević Janičić and Filip Marić. Regression verification for automated evaluation of
students programs. Computer Science and Information Systems, 17(1):205–228, 2020.

[20] Milena Vujošević Janičić and Mirko Spasić. Tools LAV and SQLAV, 2020. http://argo.matf.

bg.ac.rs/?content=lav, retrieved May 15, 2022.

[21] Branislava Živković and Milena Vujošević Janičić. Parallelization of Software Verification Tool
LAV. In Types for Proofs and Programs (TYPES), pages 103–104. Eotvos Loránd Univ., 2017.

2

https://www.w3.org/TR/sparql11-query/
https://www.w3.org/TR/sparql11-query/
https://github.com/mirkospasic/sqlc
https://github.com/mirkospasic/sqlc
http://argo.matf.bg.ac.rs/?content=specs
http://argo.matf.bg.ac.rs/?content=specs
http://argo.matf.bg.ac.rs/?content=lav
http://argo.matf.bg.ac.rs/?content=lav

