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Software verification techniques for proving different kinds of code equivalence [19] are essen-
tial in the context of code refactoring and optimizations. Code refactoring and optimizations
are daily programming practices that are, on the one hand, necessary to maintain software
quality, but on the other increase the risk of introducing errors into the code [9, 17]. Therefore,
reliable automatic checks of the functional equivalence of the original and modified code are
highly desirable.

An important refactoring/optimization context is within database-driven applications. This
context includes the synergy of different programming languages and paradigms, namely impera-
tive/object-oriented programming (for example, c/c++) and declarative programming (sql).
Modifying such code may contain simultaneous changes (changes that include both sql and a
host language code) and that together preserve the overall code equivalence (but if considered
separately, the modified sql query itself or the modified imperative code itself are not seman-
tically equivalent to the originals). We propose a first-order logic modeling of sql queries and
link this modeling to c/c++ semantics implemented within the tool lav [18, 16, 21, 15]. We
implement an sqlav framework that is publicly available and open-source [20, 11]. sqlav
generates equivalence conditions that are efficiently solved by smt solvers. The framework con-
firms the equivalence of the modified code or points to potential problems and explains why
equivalence cannot be proven [10, 9].

Another context that we consider are queries written in sparql [6]. Sparql is the standard
query language and protocol for Linked Open Data [4] and can be used to express queries across
diverse data sources. Query equivalence can be reduced to a query containment problem,
a problem of deciding if each result of one query is also a result of another query (for any
given dataset) [5]. We consider the containment problem in both standard and subsumption
forms. We reduce sparql query containment problem to the satisfiability problem in first-order
logic and formally prove the soundness and completeness of the proposed approach [14]. We
implement a tool SpeCS [13, 14] which covers a wide range of the language constructs, e.g.
conjunctive queries, filter, union, optional, graph clauses, blank nodes, projections, subqueries,
built-in functions, etc. It also supports reasoning under the RDF schema entailment regime
[2]. As the query containment problem is reduced to the satisfiability problem in first-order
logic, conditions generated by SpeCS can be solved by first-order logic provers (like Vampire
[7]) or by smt solvers (like Z3 [3]). SpeCS is publicly available and open-source [12] and its
evaluation on standard benchmarks [8, 1] shows that it is fast, accurate and reliable [13, 14].
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[16] M. Vujošević Janičić, M. Nikolić, D. Tošić, and V. Kuncak. Software verification and graph sim-
ilarity for automated evaluation of students’ assignments. Information and Software Technology,
55(6), 2013.
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