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In this talk, we present two works in progress to recheck KProver proof objects into Dedukti, restricting
ourselves to one specific reachability property: concrete execution.

The first one is to generate proof objects from the trace provided by the KProver and then check them in
Dedukti. This approach requires finding an encoding of Matching Logic in Dedukti, and then automatically
encoding the K semantics as well as the proof objects in this encoding.

The second approach builds on the generation of proof objects already done for Metamath. This approach
requires translating the encoding of Matching Logic into Metamath, within Dedukti, and then automatically
translating the Metamath proof objects into Dedukti.

K presentation. K is a semantical framework for
formally describing the semantics of programming lan-
guages. It is also an environment that offers various tools
to help programming with the languages specified in the
formalism (Figure 1). It is for example possible to exe-
cute programs and to check some properties on them, us-
ing the automatic theorem prover named KProver [11].
K is based on a theory of Matching Logic [10, 5, 4, 3],
named Kore, a 1st order untyped classic logic with an
application between formulas and, fixed point, equality
and typing operators, as well as an operator similar to the
”next” operator of temporal logics. Kore is composed
of the equality, the sort and the rewriting theories.

Figure 1: Pipeline of K

Figure 2: Pipeline of Dedukti

Dedukti presentation. Dedukti [1] is a logical
framework allowing the interoperability of proofs be-
tween different formal proof tools, as Coq or PVS (Fig-
ure 2). It has import and export plugins for proof
systems as various as Coq, PVS or Isabelle/HOL.
Dedukti is based on the λΠ-calculus modulo theory
(λΠ≡T ), an extension of the type theory by adding
rewriting rules [7] in the conversion relation, introduced
by Cousineau and Dowek [6]. The flexibility of this log-
ical framework allows to encode many theories like 1st
order logic or simple type theory.

The direct approach. This approach is to generate proof objects from the trace provided by the KProver and
then check them in Dedukti. To achieve this goal, we need to encode Matching Logic into Dedukti, but also
automatically translated the K semantics as well as the trace into this encoding.

This approach is based on the work of formalisation carried out within Metamath [2], as well as a work about
the translation of K semantics into Dedukti, via Kore, making it possible to execute K semantics in Dedukti [8].

This work involved understanding the logical foundations of K, i.e., Matching Logic and the particular
Matching Logic theory called Kore, as well as how the K semantics of an language L can be automatically
translated into a Kore extension theory ΓL.
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The approach via Metamath. The second approach builds on the generation of proof objects already done for
Metamath. This approach requires, also, translating the encoding of Matching Logic into Metamath, within
Dedukti, and then automatically translating the Metamath proof objects into Dedukti. Using an example from
formal number theory of Mendelson, we detail how to construct a λ-term from a Metamath proof.

The language of Metamath is composed only of de-
clarations of constants (line 1), variables (line 2), axioms
(lines 8-13 and 16) and proofs (See below). Several types
of hypothesis are possible: typing or floating (lines 3-7),
logical or essential (lines 14-15) or restriction (with the
keyword $d).

The proof mechanism of Metamath is simple since it
is only based on substitution and the notion of stack. In-
deed, the stack is used to store the different pieces of con-
struction of the proof, whereas substitution allows sev-
eral pieces to be combined. Metamath considers that a
proof is correct if, at the end of its verification, the stack
contains a single element which is syntactically equal to
the statement.

1 $c 0 + = -> ( ) term wff |− $.

2 $v t r s P Q $.

3 tt $f term t $.
4 tr $f term r $.
5 ts $f term s $.

6 wp $f wff P $.

7 wq $f wff Q $.

8 tze $a term 0 $.

9 tpl $a term ( t + r ) $.
10 weq $a wff t = r $.
11 wim $a wff ( P -> Q ) $.
12 a1 $a |− ( t = r -> ( t = s -> r = s ) ) $.
13 a2 $a |− ( t + 0 ) = t $.
14 ${ min $e |− P $.

15 maj $e |− ( P -> Q ) $.
16 mp $a |− Q $. $}

This principle of proof checking is very simple but
gives rise to very verbose and therefore difficult to read
proofs, as shown in the proof on the right. Moreover,
the steps of arity checking, typing checking, and correct
application of the rules are completely mixed up.

th1 $p |− t = t $=
tt tze tpl tt weq tt tt weq tt a2
tt tze tpl tt weq tt tze tpl tt weq
tt tt weq wim tt a2 tt tze tpl tt tt a1
mp mp $.

The general idea for constructing a λ-term associated with a Metamath proof is to follow exactly the same
verification mechanism as Metamath: the steps of arity and typing checking are skipped, while the assembly proof
steps use axioms already translated in Dedukti. For our example, we obtain the λ-term:
λ t. mp (a2 t) (mp (a2 t) (a1 (t + 0) t t)

For Dedukti to check this term, it will be necessary that, manually, the constants 0, +, =, ->, and the axioms
a1, a2, and mp have been translated by symbols in Dedukti.

Conclusion & Perspectives The direct approach to Dedukti constitutes a part of the author’s thesis work.
The approach via Metamath is the subject of a 3-month internship supervised by the author.
The approaches we present here rely heavily on the formalisation work carried out within Metamath [2]. Later,
we would like to extend our approaches to symbolic execution, such as [9]
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